Farming Futures: integrating plant research and industry in the agri-food supply chain

This week we speak to Tim Williams, the Business Manager of Farming Futures and Research Fund Development Manager at Aberystwyth University, UK.

Could you give a brief introduction to Farming Futures and its mission?

Farming Futures is an independent, UK-based, inclusive agri-food supply chains alliance. Our mission is to work with researchers and industry to share knowledge, with the aim of improving the sustainability and productive efficiency of agriculture, all within the context of healthy, high-quality food.


What is the history of the organization?

Farming Futures started with an idea by Professor Wayne Powell in 2009 (then the director of the Institute of Biological, Environmental and Rural Sciences (IBERS) at Aberystwyth) in discussion with Mark Price, who was the Managing Director of British supermarket chain Waitrose. It was launched in 2010, starting out as the Centre of Excellence for UK Farming (CEUKF). Waitrose seed-funded Farming Futures, and since then we have received support from the Agriculture and Horticulture Development Board (AHDB) and Innovate UK.


Farming Futures

The inauguration meeting of Farming Futures in 2009, then known as the Centre of Excellence for UK Farming. Left-Right: Tim Williams, Wayne Powell, Heather Jenkins, David Davies, Philip Morgan, Jamie Newbold.


How has plant and crop research been integrated into the recommendations presented by Farming Futures?

Plant science is the fundamental driver for agri-food development. We work closely with industry, as well as the AHDB and other farm advisory bodies across the UK to inform them about new developments. Accelerated, directed breeding programs using genomic and phenomic technologies are helping us to develop new varieties that offer more productive, more resilient, environmentally friendly plants – not just as food crops, but also for soil quality, nutrient retention, flood reduction, energy biomass, renewable chemistry, and a host of other desirable characteristics.

Historically, to paraphrase a fellow botanist, we have bred ‘needy, greedy plants’ that deplete resources and need lots of nasty chemicals to keep them growing. Now scientists are mining the genomes of crop ancestors to rediscover the genetic traits we unwittingly threw away on the route to increased yield.


What roles do research partners such as universities play?

We work together in a pre-competitive way to enable research, and to represent farming within agri-food policy – researchers from different organizations can collaborate thanks to our partners’ trusting relationships with each other. Collaborations in science are vital because the problems our global society faces are multi-factorial, non-linear and multi-disciplinary. They are far too complex for the typical university research team, working alone, to address efficiently. We need the equivalent of the CERN Large Hadron Collider project for agri-food.

In addition to helping researchers to bring in millions of pounds worth of applied research projects (at least £12 million, but it is notoriously difficult to find out what industry is funding), Farming Futures helped to establish the government-funded Agri-Food Tech Centres of Innovation for a total of around £90 million, bringing in industry to co-fund and support three of the four: the Agrimetrics Centre, Agri-Epi-Centre and Centre of Innovation Excellence in Livestock. In time, these Centres will catalyze a lot of collaborative research and will help stimulate innovation and technology uptake by industry.


What climate change challenges will farmers face? Are there any specific challenges that Farming Futures can address?

Farming Futures and its network brings together scientists from different disciplines to discuss these problems and potential solutions. For instance, people from the UK’s national weather service (the Met Office) and some of the biggest food retailers and processors in the world come together at our conferences and workshops to think through scenarios and solutions. These solutions include breeding crops for increased resilience, not just peak yield. We are running out of fungicides that work efficiently, in the same way that we are running out of antibiotics; however, some very clever scientists have worked out some potential solutions that are more environmentally sound, so I am an optimist.

This problem solving is best done at the supply-chain level as it brings in a wider expertise. As I repeat often, a colleague once said to the board of one of the world’s biggest brewers, “No barley = no beer = no business”, inferring the question, “What are you doing to ensure that barley growers are going to be able to supply you in the future?”


Your website has an interesting study from 2011 highlighting six potential jobs of the future, including geoengineer, energy farming, web 3.0 farm host, pharmer, etc. How can students direct their skill development to meet the needs of the future?

There are many emerging jobs and skills, but each of these named jobs from 2011 are actually in practice now. The web 3.0 has now become web 4.0, which is the “internet of things”, with data collection from lots of devices including drones for precision agriculture and robots for weeding and picking crops.

The future of agri-food is in big data, including consumer behavior, weather forecasting, genomics, phenomics, and real-time analysis of the growth progress of plants and animals on-farm. We need more electronic and mechanical engineers with an understanding of biology, as well as more biologists who work within the agri-food industries and in government policy development.


Farming Future exhibition

The Farming Futures exhibition stand at the Livestock Event, NEC Birmingham, 2012.


What are you currently working on?

We are currently working with partners on a number of projects across the Agri-Food Tech Centres and trying to form more research collaborations. One of our big projects is The National Library for Agri-Food. I am currently working with web developers and experts from Jisc and the British Library to scope the requirements and to build a demonstration web site.

Finally, I would just like to add that we are open to collaborations across agri-food supply chains and will work to foster them, either openly or privately as appropriate.


In addition to IBERS, Farming Futures has four founding members (Northern Ireland’s Agri-Food and Biosciences Institute (AFBI), Harper Adams University (HAU), NIAB with East Malling Research (NIAB-EMR), and Scotland’s Rural College (SRUC)) and an influential Steering Board, chaired by Lord Curry of Kirkharle, who is very well known and respected in UK government and farming.


1000 Plants

The 1000 plants initiative (1KP) is a multidisciplinary consortium aiming to generate large-scale gene sequencing data for over 1000 species of plants. Included in these species are those of interest to agriculture and medicines, as well as green algae, extremophytes and non-flowering plants. The project is funded by several supporters, and has already generated many published papers.

Gane Wong is a Professor in the Faculty of Science at the University of Alberta in Canada. Having previously worked on the Human Genome Project, he now leads the 1KP initiative. Dennis Stevenson, Vice President for Botanical Research, New York Botanical Garden, and Adjunct Professor, Cornell University (USA), studies the evolution and classification of the Cycadales. He became involved in the 1KP initiative as an opportunity to sample the breadth of green plant diversity.

We spoke to both Professor Stevenson (DS) and Professor Wong (GW) about the initiative. Professor Douglas Soltis from Florida Museum of Natural History also contributed to this blog post with input in editing the answers.

What do you think has been the biggest benefit of 1KP?

DS: This has been an unparalleled opportunity to reveal and understand the genes that have led to the plant diversity we see around us. We were able to study plants that were pivotal in terms of plant evolution but which have not previously been included in sequencing projects as they are not considered important economically

The 1KP project presented a fantastic opportunity to explore plant biodiversity. Photo by Bob Leckridge. Used under Creative Commons 2.0.

The 1KP project presented a fantastic opportunity to explore plant biodiversity. Photo by Bob Leckridge. Used under Creative Commons 2.0.

GW: The project was funded by the Government of Alberta and the investment firm Musea Ventures to raise the profile of the University of Alberta. Notably there was no requirement by the funders to sequence any particular species. I was able to ask the plant science community what the best possible use of these resources would be. The community was in full agreement that the money should be used to sample plant diversity.

Hopefully our work will change the thinking at the funding agencies regarding the value of sequencing biodiversity.

What techniques were utilized in this project to carry out the research?

GW: Complete genomes were too expensive to sequence. Many plants have unusually large genomes and de novo assembly of a polyploid genome remains difficult. To overcome this problem, we sequenced transcriptomes. However, this made our sample collection more difficult as the tissue had to be fresh. In addition, when we started the project, the software to assemble de novo transcriptomes did not work particularly well. I simply made a bet that these problems would be solved by the time we collected the samples and extracted the RNA. For the most part that’s what happened, although we did end up developing our own assembly software as well!

The 1KP initiative is an international consortium. How has the group evolved over time and what benefits have you seen from having this diverse set of skills?

GW: 1KP would not be where it is today without the participation of scientists around the world from many different backgrounds. For example, plant systematists who defined species of interest and provided the tissue samples worked alongside bioinformaticians who analyzed the data, and gene family experts who are now publishing fascinating stories about particular genes.

 DS: One of the great things about this project is how it has evolved over time as new researchers became involved. There is no restriction on who can take part, which species can be studied or which questions can be asked of the data. This makes the 1KP initiative unique compared to more traditionally funded projects.

GW: We continually encouraged others to get involved and mine our data for interesting information. We did a lot of this through word of mouth and ended up with some highly interesting, unexpected discoveries. For example, an optogenetics group at MIT and Harvard used our data to develop new tools for mammalian neurosciences. This really highlights the importance of not restricting the species we study to those of known economic importance.

According to ISI outputs from this research, two of the most highly cited papers from 1KP are here and here.

You aimed to investigate a highly diverse array of plants. How many plants of the major phylogenetic groups have now been sequenced, and are you still working on expanding the data set?

DS: A lot of thought went into the species selection. We aimed for proportional representation (by number of species) of the major plant groups. We also aimed to represent the morphological diversity of those groups.

GW: Altogether, we generated 1345 transcriptomes from 1174 plant species.

Has this project lead to any breakthroughs in our understanding of the phylogeny of plants?

DS: This will be the first broad look at what the nuclear genome has to tell us, and the first meaningful comparison of large nuclear and plastid data sets. However, due to rapid evolution plus extinction, many parts of the plant evolutionary tree remain extremely difficult to solve.

Hornworts are non-vascular plants that grow in damp, humid places. Photo by Jason Hollinger. Used under Creative Commons License 2.0.

Hornworts are non-vascular plants that grow in damp, humid places. Photo by Jason Hollinger. Used under Creative Commons License 2.0.

One significant breakthrough was the discovery of horizontal gene transfer from a hornwort to a group of ferns. This was unexpected and very interesting in terms of the ability of those ferns to be able to accommodate understory habitats.

GW: With regard to horizontal gene transfer, there are papers in the pipeline that will illustrate the discovery of even more of these events in other species. We have also studied gene duplications at the whole genome and gene family level. This is the most comprehensive survey ever undertaken, and people will be surprised at the scale of the discoveries. However, we will be releasing our findings shortly as part of a series and it would be unwise for us to give the story away here! Keep a look out for these!

Cassava brown streak: lessons from the field

This week’s post was written by Katie Tomlinson, a PhD student at the University of Bristol, UK, who spent three months as an intern at the National Crops Resource Research Institute in Uganda. She fills us in on the important research underway at the Institute, and how they communicate their important results to local farmers and benefit rural communities.  

Over the summer, I had a great time at the National Crops Resources Research Institute (NaCRRI) in Uganda. I’m currently in the second year of my PhD at the University of Bristol, UK, where I’m researching how the cassava brown streak disease (CBSD) viruses are able to cause symptoms, replicate and move inside plants. I was lucky enough to be given a placement at NaCRRI as part of the South West Doctoral Training Partnership Professional Internship for PhD Students (PIPS) scheme, to experience the problem for myself, see the disease in the field, meet the farmers affected and investigate the possible solutions.


Cassava brown streak disease

Cassava brown streak disease symptoms on tubers. Image credit: Katie Tomlinson.


Cassava is a staple food crop for approximately 300 million people in Africa. It is resilient to seasonal drought, can be grown on poor soils and harvested when needed. However, cassava production is seriously threatened by CBSD, which causes yellow patches (chlorosis) to form on leaves and areas of tubers to die (necrosis), rot and become inedible.

Despite being identified in coastal Tanzania 80 years ago, CBSD has only been a serious problem for Uganda in the last 10 years, where it was the most important crop disease in 2014–2015. The disease has since spread across East Africa and threatens the food security of millions of people.

NaCRRI is a government institute, which carries out research to protect and improve the production of key crops, including cassava. The focus is on involving farmers in this process so that the best possible crop varieties and practices are available to them. Communication between researchers and farmers is therefore vital, and it was this that I wanted to assist with.


Scoring cassava brown streak disease

Scoring cassava plants for Cassava brown streak symptoms. Image credit: Katie Tomlinson.


When I arrived I was welcomed warmly into the root crop team by the team leader Dr Titus Alicai, who came up with a whole series of activities to give me a real insight into CBSD. I was invited to field sites across Uganda, where I got to see CBSD symptoms in the flesh! I helped to collect data for the 5CP project, which is screening different cassava varieties from five East and Southern African countries for CBSD and cassava mosaic disease (CMD) resistance. I helped to score plants for symptoms and was fascinated by the variability of disease severity in different varieties. The main insight I gained is that the situation is both complex and dynamic, with some plants appearing to be disease-free while others were heavily infected. There are also different viral strains found across different areas, and viral populations are also continually adapting. The symptoms also depend on environmental conditions, which are unpredictable.

I also got to see super-abundant whiteflies, which transmit viruses, and understand how their populations are affected by environmental conditions. These vectors are also complex; they are expanding into new areas and responding to changing environmental conditions.

It has been fascinating to learn how NaCRRI is tackling the CBSD problem through screening different varieties in the 5CP project, breeding new varieties in the NEXTGEN cassava project, providing clean planting material and developing GM cassava.


Tagging cassava plants

Tagging cassava plants free from Cassava brown streak disease for breeding. Image credit: Katie Tomlinson.


And there’s the human element…

In each of these projects, communication with local farmers is crucial. I’ve had the opportunity to meet farmers directly affected, some of whom have all but given up on growing cassava.


Challenging communications

Communicating has not been easy, as there are over 40 local languages. I had to adapt and learn from those around me. For example, in the UK we have a habit of emailing everything, whereas in Uganda I had to talk to people to hear about what was going on. This is all part of the experience and something I’ll definitely be brining back to the UK! I’ve had some funny moments too… during harvesting the Ugandans couldn’t believe how weak I was; I couldn’t even cut one cassava open!


Real world reflections

I’m going to treasure my experiences at NaCRRI. The insights into CBSD are already helping me to plan experiments, with more real-world applications. I can now see how all the different elements (plant–virus–vector–environment–human) interact, which is something you can’t learn from reading papers alone!

Working with the NaCRRI team has given me the desire and confidence to collaborate with an international team. I’ve formed some very strong connections and hope to have discussions about CBSD with them throughout my PhD and beyond. It’s really helped to strengthen collaborations between our lab work in Bristol and researchers working in the field on the disease frontline. This will help our research to be relevant to the current situation and what is happening in the field.


Some of the NaCRRI team

Saying goodbye to new friends: Dr. Titus Alicai (NaCRRI root crops team leader), Phillip Abidrabo (CBSD MSc student) and Dr. Esuma Williams (cassava breeder). Image credit: Katie Tomlinson.


In Nature Plants: Come together

This post is republished with permission from Nature Plants.

Science is not a solo endeavour but a social one, and the most social part is conference attendance. Regardless of their other strengths and weaknesses, scientific meetings are critical for encouraging researchers early in their careers.


Image credit: Dion Hinchcliffe. Used under license: CC BY-SA 2.0.

Unquestionably, one of the most enjoyable aspects of being a journal editor is the opportunity to attend conferences. While the average scientist may get to one or two scientific meetings a year, we try to get to many more — and so are in a good position to compare the different styles of meeting, and to try to understand what makes a conference not just good, but great.

Mainly, it is the people who are attending. Meetings are exactly what the name implies: an opportunity to meet colleagues and discuss science. But there are many factors that determine who will attend a conference, and whether they will get to talk constructively while they are there. Location is important. Many scientific conferences are held in places well worth visiting in their own right. Last year’s International Plant Molecular Biology Congress, for example, was held near Iguazú Falls, Brazil; the XIV Cell Wall Meeting was held this year on the Greek island of Crete; and, next year, the Plant Biology 2017 conference of the American Society of Plant Biology (ASPB) will be in Honolulu, Hawaii. However, as much as exotic locations may be a draw for participants, the long and expensive journeys can be a deterrent.


Image credit: Dimitris Kalogeropoylos. Used under license: CC BY-SA 2.0.

An additional factor is the breadth, or narrowness, of focus of a meeting, which affects both its size and atmosphere. Larger meetings with a broad range of topics guarantee that there will be something of interest to everyone. These can be superb at giving a broad view of the important questions currently being addressed in a field, and usually have presentations by impressive well-known and well-practiced speakers. However, it can be difficult to meet all the people with whom you want to chat without considerable dedication and forward planning.

You often see a reluctance in speakers to present new and unpublished work at larger meetings. For that, smaller meetings come into their own, where a more tightly defined community makes it more appealing to share confidences in a room perceived to be full of ‘friends’. If the location is remote, so much the better, as it forces that community closer together. The summertime masters of such meetings are the Gordon Research Conferences, which are often (though not exclusively) held in out-of-season New England boarding schools — two of which, this year, are the Plant Molecular Biology and Plant & Microbial Cytoskeleton meetings. In the winter, there are the Keystone Symposia, which have the added attraction of afternoons left free for skiing. In fact, the conversations had while trapped on a ski lift can often be the most scientifically productive of the whole event.


Image credit: NASA Goddard Space Flight Center. Used under license: CC BY 2.0.

More focused meetings will usually give attendees the opportunity to attend every talk, but larger conferences frequently host parallel sessions to allow many more topics to be discussed. Successfully presenting parallel sessions is hard. Ideally the topics covered should overlap so little that every attendee would wish to attend one session, and one session only — a goal never fully achieved, and rarely even approached. Instead, attendees must pick the talks that they most want to see, which are often presented in different sessions, leading to a lot of distracting crowd movement between talks. For sessions to remain synchronized, speakers must keep strictly to their allotted time — again something so difficult to achieve that it rarely, if ever, happens.

At its heart, the main point of a scientific conference is not to visit interesting places, to catch up with old friends, to party with colleagues (although much partying does occur), or even to listen to high-profile scientists lecture on their work. All these are important aspects of a successful conference, but its central function is to bring people together to discuss their own studies. Where this happens most is at the poster sessions — the great equalizer of any scientific conference..


GPC New Media Fellow Sarah Jose presents a poster at a conference

However lofty the professor or junior the student, with a poster everyone can present their work on an equal level, open to the criticism of all. They are the soul of any good conference, but they are the most difficult aspect to organize successfully. Ideally the posters should all be in one place rather than spread out over a number of rooms, to avoid some groups getting ignored. The posters need to be arranged close enough together that when the session is in full swing there is a throng and hubbub of chatter, but not so closely packed that posters are blocked by people reading the next one over. It is also vital that there is enough space to move freely between posters without having to squeeze past huddles of scientists talking with the presenters. Above all, posters must be available for long enough that conference-goers can read all that are relevant to them. Therefore poster rooms need to be open throughout the conference, not just during designated sessions, and all posters should be available for the whole conference, not taken down halfway through to make way for a second batch.

Posters provide some of the first opportunities that early-career scientists have to present their research. It is therefore always good to see conferences enhancing their status in some way. The simplest is the awarding of prizes for the ‘best’ posters, judged as much for the clarity of presentation as for the story being told. Some conferences have started to schedule ‘flash talks’, selecting presenters to give a short description of their work, and serving as an advert for their posters. This commonly takes the format of five-minute presentations with no more than three slides — but ‘slam’ sessions are also possible, where a single minute is allocated to each speaker. A variation of this occurred at the recent ASPB Plant Biology 2016 meeting in Austin, Texas: early-stage researchers were helped to video ‘elevator pitches’ about their work, which can now be seen on the Plantae YouTube channel. It is also encouraging to see that the New Phytologist Trust will again be holding a Next Generation Scientists symposium next year, following on from the successful inaugural meeting in 2014.

The planning, organization and execution of a scientific meeting requires as much skill, enthusiasm and innovation as any other part of the scientific endeavour. After all, a good conference brings scientists together to discuss ideas, initiate collaborations and forge friendships that can last for entire careers, and sometimes longer.

Interview with Dr. Winfried Peters: Bringing forgotten ideas on plant biomechanics into the 21st century

This week we spoke to Dr. Winfried S. Peters from Indiana University/Purdue University Fort Wayne (IPFW). His research mainly focuses on the biomechanics of plant cells, which led him to take a second look at some of the ideas of botanists in the 19th and early 20th century and use modern techniques to make exciting new discoveries.

Winfried Peters

Dr Winfried S. Peters, Indiana University/Purdue University Fort Wayne (IPFW), next to several tons of land-plant sieve elements!


Could you begin by describing your research interests?
I am interested in the biophysical aspects of the physiology of plants and animals. In plants, my research focuses on the mechanics of growth and morphogenesis, and on the cell biology of long-distance transport in the phloem. For both topics, a solid background in the history of the field can be quite helpful – I love studying the old literature to reconstruct the ideas botanists had a century or two ago regarding the functioning of plants.

At the recent New Phytologist Symposium, entitled “Colonization of the terrestrial environment 2016”, you presented fascinating work on the sieve tubes of kelp, which resemble the phloem tubes of vascular plants. What is the purpose of these tubes?
In large photosynthetic organisms, not all parts of the body are truly autototrophic. Some tissues produce more material by photosynthesis than they need, while others produce less than they require or none at all– think of green leaves and growing root tips. Over-producing tissues can act as sources and export photoassimilates to needy sink tissues. Sieve tubes are arrays of tubular cells that mediate this exchange, enabling the rapid movement of photosynthate-rich cytoplasm between sources and sinks.

What techniques did you utilize to investigate the function of these tubes, and what did this reveal?
During my recent sabbatical, I became involved in this project in the lab of my friend and long-term collaborator, Professor Michael Knoblauch. Michael heads the Franceschi Microscopy and Imaging Center at Washington State University, where we studied sieve tubes of the Bull Kelp (Nereocystis luetkeana) using a variety of state-of-the-art microscopy techniques. Most importantly, we employed fluorescent dyes to visualize transport in sieve tube networks. To do this, one needs to work with intact kelp, which is demanding given a thallus size of 12 meters and more. So we moved to Bamfield Marine Sciences Centre on Vancouver Island, where Bull Kelp is a ‘common weed’.

A particularly important result was the pressure-induced reversal of the flow direction in sieve tubes and across sieve plates. This was in line with Ernst Münch’s (1876-1946) theory, who suggested that sieve tube transport was driven by osmotically generated pressure gradients.


Nereocystis wounding

An intact Nereocystis luetkeana is kept in a tank (right) while sieve tube transport is studied using a fluorescence microscope. Photo credit: Michael Knoblauch.

How do the biomechanics of the kelp sieve tubes differ from the phloem tubes of higher plants?
Regarding cytoplasmic translocation, there doesn’t seem to be a difference – in higher plants as in kelps, the contents of the sieve tubes move in bulk flow – but wounding responses differ drastically. After wounding, we found that kelps have a massive swelling of the walls, which reduced the sieve tube diameter by more than 70%. By injecting silicon oil into severed kelp sieve tubes we demonstrated that wall swelling was fully reversible, and that the swelling state of the walls depended on intracellular pressure.

Wounding response in kelp

Sieve wall tubes swell after wounding due to changes in intracellular pressure. (Images taken from video below).

Have reversible wall-swelling reactions been observed in other species, and what are the implications of this finding?
We have observed the wall-swelling response in all kelp species examined. Ironically, there is no shortage of drawings and photographs of kelp sieve tubes with swollen walls in the literature over the last 130 years; however, the dynamics of cell behavior remained hidden in plain sight because fixed tissue samples rather than fully functional, whole organisms were studied. Consequently, sieve tubes with swollen walls were misinterpreted as senescent cells. There also are publications on turgor-dependent cell wall swelling in red and green algae, but these ceased around 1930.

Afterwards, wall swelling was completely forgotten, judging from the textbooks. This is remarkable, as Wilhelm Hofmeister (1824-1877), often celebrated as a founding father of plant biomechanics, denied a significant role for osmotic processes in the generation of turgor, the hydrostatic pressure within plant cells. Rather, he maintained that living cells were pressurized by the swelling of their walls. The example of the kelp sieve tube shows how easy it is to remain unaware of wall swelling when it happens right before our eyes. Maybe we should take Hofmeister’s idea seriously once again?

What are the evolutionary implications of your work?
Brown algae and vascular (land) plants are only remotely related, and their sieve tube networks certainly evolved independently of each other. It seems surprising that such sophisticated structures, which serve a complex function that integrates the physiology of the entire organism, have evolved at least twice, but think again. Real cells are not embedded in a totally homogeneous environment, and neither is the cytoplasm within the cell a homogeneous solution. Thus every cell experiences gradients of solute concentrations along its inner and/or outer surface. As a consequence, differential water fluxes across the plasma membrane will occur, resulting in movements of the cell contents. In other words, Münch flow, the cytoplasmic bulk flow driven by osmotically generated pressure gradients, is not a peculiar process operating specifically in sieve tubes, but a ubiquitous phenomenon. Sieve tubes consist of cells that simply do the things cells do, just a little more efficiently as usual. In this view, the repeated convergent evolution of sieve tube networks is not really unexpected.

But kelps resemble land plants in other ways too. As in land plants, kelp cell walls are made of cellulose (at least partly), kelp cells are connected through plasmodesmata, and the kelp life-cycle is a sporophyte-dominated alternation of generations. Evidently, none of these features represents a specific adaptation to life on dry land.

Wound responses including wall swelling in a sieve tube of Nereocystis luetkeana. (Watch for the rapid cell wall swelling between 11 and 14 seconds in!) This video was taken by Professor Michael Knoblauch in collaboration with Dr Winfried S. Peters.

If you’d like to know more about this fascinating work, it was been published in the following articles:

Knoblauch, J., Peters, W.S. and Knoblauch, M., 2016. The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve platesAnnals of Botany117(4), pp.599-606.

Knoblauch, J., Drobnitch, S.T., Peters, W.S. and Knoblauch, M., 2016. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control? Plant, Cell and Environment39(8), pp.1727-1736.


Feeding the world with virtual crops

This week’s blog comes from Rachel Shekar, the project manager for the “Crops in silico” project.

Researchers watch a field of soybean emerge, grow, and abruptly die in the span of one minute — on their computer screens. These virtual crops will help them understand how crops will respond to climate change – an ever-growing threat to worldwide food production – and could lead to overcoming its threat to global food security.

Food security

Image credit: Kate Holt. Used under license: CC BY 2.0.

It is estimated that, by 2050, food production will need to increase by 70% to meet the demands of a growing global population. According to the latest UN projections, the world’s population will rise from 6.8 billion today to 9.1 billion in 2050 – a third more mouths to feed than there are today. Nearly all of the population growth will occur in developing countries.

At the same time as demand for food is increasing, the world will also be facing fresh water scarcity and climate change.

Climate change is expected to bring warmer temperatures, changes to rainfall patterns, and increased frequency and severity of extreme weather events. Although projections vary, it is clear that crop yields will decrease as climate change increases. Furthermore, the countries that most need food – such as sub-Saharan Africa – are the very places that will be most severely affected by climate change. Growing water use and rising temperatures are expected to further increase water stress in many agricultural areas by 2025.

Soy field

Soy field. Image credit: Neil Palmer (CIAT). Used under license: CC BY-SA 2.0.

Can crop yields be increased in time?

The introduction of new crop varieties that produce higher and more stable yields in the face of drought, heat, diseases, and other stresses will allow farmers to grow crops that are adapted to climate change.

Plant models can be used to rapidly identify genes that will improve yields and utilize resources more efficiently, which will provide targets for developing productive varieties of food crops more quickly than ever before.

Because many traits, such as yield, are controlled by interactions between genetics, the environment, and the ecosystem, the most accurate results can be obtained by incorporating information across different biological scales—from molecular and cellular up to the organ, plant, and community levels.

Understanding the whole plant

Soy trials

Data for the system-level model was derived from soybean trials at University of Illinois South Farms. Image credit: Haley Ahlers.

The Crops in silico team at the University of Illinois and National Center for Supercomputing Applications is developing and linking models across different biological scales to more accurately simulate plant responses to a changing environment.

The team is developing models from the molecular to field, and root to leaf levels. Once the models are linked, an entire virtual crop canopy can be created and used to identify target genes for yield improvement under a range of environments. Other researchers can then use this information to develop crops that will thrive in tomorrow’s climate.

Crops in silico is currently focusing on soybean plants. The wealth of data from SoyFACE, an open-air experiment at the University of Illinois where soybean is grown in future climate conditions (e.g. elevated carbon dioxide, temperature, and drought), is facilitating model development and validation.

Soy render

Rendered plant- and canopy-level data from the system-level model. Image credit: Crops in silico.

Future work by Crops in silico will target staple food crops in developing countries including rice, legumes, and cassava.

Crops in silico aims to create an open-source teaching and training tool for students. A user-friendly web interface will allow non-modelers to visualize model outputs as easy-to-interpret graphs, tables, animated simulations of plant growth and ecosystem interactions.

Building a research community

Plants In Silico Meeting

Photograph from the Plants in silico Symposium & Workshop held in Urbana, Illinois in 2016. Image credit: Rachel Shekar (Crops in silico).

The success of this effort is dependent on a connected Crops in silico community that can take full advantage of advances in computational science, and our mechanistic understanding of plant processes and their responses to the environment. The first step in creating the community was taken this summer when a group of international scientists met at the first Plants in silico Symposium & Workshop in Illinois. Workshop participants identified specific challenges to integrative and multi-scale modeling in plants, and their solutions.

Together, this community will create the most complete models of staple food crops, to identify varieties that will ensure food security around the world in the face of climate change.

For more information on the Plants in silico project, read the recent paper in Plant, Cell and Environment (open access): Plants in silico: why, why now and what?—an integrative platform for plant systems biology research.

Plantwise – promoting and supporting plant health for the Sustainable Development Goals

Andrea Powell

Andrea Powell, CABI

Promoting and supporting plant health will be an important part of how we achieve the United Nations’ Sustainable Development Goals (SDGs). Andrea Powell, Chief Information Officer of the Centre for Agriculture and Biosciences International (CABI) looks at how the CABI-led Plantwise programme is helping to make a difference.

By Andrea Powell


On 26th and 27th July 2016, CABI held its 19th Review Conference. This important milestone in the CABI calendar saw our 48 member countries come together to agree a new medium-term strategy. As always, plant health was a key focus to our discussions, cutting across many of CABI’s objectives. For CABI, with 100 years of experience working in plant health, it has become one of our most important issues, upon which our flagship food security program, Plantwise, has been built.

Plant health can, quite simply, change the lives and livelihoods of millions of people living in rural communities, like smallholder farmers. Human and animal health make headlines, while plant health often falls under the radar, yet, it is crucial to tackling serious global challenges like food security. Promoting and supporting plant health will be an important way to achieve the Sustainable Development Goals (SDGs).

Plant health and the SDGs

Take, for example, SDG 1, which calls for ‘no poverty’. The UN states that one in five people in developing regions still lives on less than $1.25 a day. We know that many of these people are smallholder farmers. By breaking down the barriers to accessing plant health knowledge, millions of people in rural communities can learn how to grow produce to sell to profitable domestic, regional and international markets.

Plantwise ReportSDG 2 focuses on achieving ‘zero hunger’. Almost one billion people go hungry and are left malnourished every day – and many are children. Subsistence farmers, who grow food for their families to eat, can be left with nothing when their crops fail. Access to plant health knowledge can help prevent devastating crop losses and put food on the table.

Interestingly, SDG 17 considers ‘partnerships for the goals’ and is critical to the way in which we can harness and share plant health knowledge more widely to help address issues like hunger and poverty. By themselves, individual organizations cannot easily resolve the complicated and interconnected challenges the world faces today. This is why partnership is at the heart of CABI’s flagship plant health programme: Plantwise.

What is Plantwise?

Plantwise Report 2015

Since its launch in 2011, the goal of Plantwise has been to deliver plant health knowledge to smallholder farmers, ensuring they lose less of what they grow. This, in turn, provides food for their families and improves living conditions in rural communities. Plantwise provides support to governments, helping to make national plant health systems more effective for the farmers who depend on them. Already, Plantwise has reached nearly five million farmers. With additional funding, and by developing new partnerships, we aim to bring relevant plant health information to 30 million farmers by 2020, safeguarding food security for generations to come.

Plantwise ‘plant clinics’ are an important part of the fight against crop losses. Established in much the same way as clinics for human health, farmers visit the clinics with samples of their sick crops. Plant doctors diagnose the problem, making science-based recommendations on ways to manage it. The clinics are owned and operated by over 200 national partner organizations in over 30 countries. At the end of 2015, nearly five thousand plant doctors had been trained.


A Plantwise plant clinic in action. Credit: Plantwise

Harnessing technology for plant health

The Plantwise Knowledge Bank reinforces the plant clinics. Available in over 80 languages, it is an online and offline gateway to plant health information, providing the plant doctors with actionable information. It also collects data about the farmers, their crops and plant health problems. This enables in-country partner organizations to monitor the quality of plant doctor recommendations; to identify new plant health problems – often emerging due to trade or climate change issues; and develop new best-practice guidelines for managing crop losses.


The first ever e-plant clinic, held in Embu Market, Kenya. Credit: Plantwise

The Plantwise flow of information improves knowledge and helps the users involved: farmers can receive crop management advice, and researchers and governments can access data from the field. With a new strategy for 2017–19 agreed, CABI will continue to focus on building strong plant health systems. We are certain that plant health is of central importance to achieving the SDGs and, together in partnership, we look forward to growing the Plantwise program and making a concrete difference to the lives of smallholder farmers.

“A few years ago, I would make ZMW 5000 per year. Last year I got 15 000. I have never missed any plant clinic session. I’ve been very committed, very faithful, because I have seen the benefits.”––Kenny Mwansa, Farmer, Rufunsa District, Zambia.

Take a look at Plantwise in action in Zambia (YouTube):

Plantwise in Zambia

Meet Linda, a Zambian plant doctor

Meet Kenny, a Zambian farmer


Learn more about Plantwise at

Uncovering the secrets of ancient barley

This week we speak to Dr Nils Stein, Group Leader of the Genomics of Genetic Resources group at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK). We discuss his recent work on the genomes of 6000-year-old cultivated barley grains, published in Nature Genetics, which made the headlines around the world.

Nils Stein

Dr Nils Stein, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Could you describe your work with the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)?

The major research focuses of my group, the Genomics of Genetic Resources, are to continue sequencing the genomes of barley and wheat, perform comparative genomics on the Triticeae tribe, isolate genes of agronomic interest, and investigate the genomics of wild barley relatives.

We are currently leading the work to generate the barley reference genome, and we are also partners in several wheat genome sequencing projects. We are genotyping-by-sequencing (GBS) all 20 000 barley accessions in the IPK Genebank, as well as 10 000 pepper accessions as part of a Horizon 2020 project (G2P-SOL) investigating the Solanaceae crop species.
Your recent collaborative paper on the genomic analysis of 6,000-year-old barley grains made headlines around the world. What did this study involve?

This was an interdisciplinary study to sequence the DNA of 6000-year-old barley grains. The grains were excavated by a team of Israeli archaeologists and archaeobotanists led by Prof. Ehud Weiss, Bar-Ilan University, the DNA was extracted and sequenced by ancient DNA specialists Prof. Johannes Krause and Dr. Verena Schünemann in Germany, and the data were analyzed by Dr. Martin Mascher in the context of our comprehensive barley genome diversity information. This allowed the resulting sequence information to be put into a population genetic and ecogeographic context.

Ancient barley

Preserved remains of rope, seeds, reeds and pellets (left), and a desiccated barley grain (right) found at Yoram Cave in the Judean Desert. Credit: Uri Davidovich and Ehud Weiss.

What led you to the realization that barley domestication occurred very early in our agricultural history?

The genome of the analyzed ancient samples was highly conserved with extant barley landraces of the Levant region, which look very similar to today’s high-yielding barley varieties. Although suggestive and tendentious, this told us that the barley crop 6000 years ago looked very similar to extant material. The physical appearance and the archaeobotanical characters of the analyzed seeds also very much resembled modern barley.


These barley grains contain the oldest plant genomes reconstructed to date. Did you find any differences between the samples that might give us an insight into the traits that were first selected in the early domestication of the crop?

We have only scratched the surface so far. The major domestication genes controlling dehiscence, brittleness or row-type of the main inflorescence had the same alleles in the ancient samples that are found in extant barley, confirming that these traits were selected for early in domestication. Additional analyses on other genes controlling different traits in barley are still ongoing – bear in mind that many of the genes controlling major traits in barley are still unknown, which complicates the selection of targets for analysis.

Modern barley

Modern barley cultivar. Credit: Christian Scheja. Used under license: CC BY 2.0.

 Do these grains have any genetic variation that we lack at key loci in modern barley lines, for example in stress or disease resistance?

This is matter of ongoing analysis. So far it is obvious that the most genetically similar extant landraces from the Levant region have accumulated natural mutations over the last 6000 years, resulting in additional variation that we don’t find in the ancient sample.


What can we expect from the barley genome projects in the future?

The International Barley Genome Sequencing Consortium is preparing a manuscript on the reference sequence of barley. This will allow further analysis of the ancient DNA data with a more complete, genome-wide view, including the consideration of a more complete gene set than has been available so far. Our Israeli collaborators (Professor Ehud Weiss and Professor Tzion Fahima) have more ancient samples of similar quality. We hope we will be able to generate a more comprehensive view of the ancient population genomics of barley in the future, to better address the question of novel ancient alleles and lost genetic diversity.

The Barley Pan-Genome analysis will soon give us a better understanding of the structural variation in the barley genome. Putting the ancient DNA information into this more comprehensive genomic context will be very exciting. We also hope to be able to compare a variety of ancient samples of different ages to more precisely date the event of barley domestication.

You can read the paper here: Genomic analysis of 6000-year-old cultivated grain illuminates the domestication history of barley ($).

Professor Stefan Jansson on what makes a GMO, and the Scandinavian Plant Physiology Society

This week we speak to Professor Stefan Jansson, Umeå University, Sweden, who is the President of one of the Global Plant Council member organizations, the Scandinavian Plant Physiology Society (SPPS). He tells us more about his fascinating work, his prominent role in the GM debate, and his thoughts on the work of the SPPS and GPC, both now and in the future.


Could you tell us a little about your areas of research interest?

I have worked on (too) many things within plant science, but now I am focused on two subjects: “How do trees know that it is autumn?”, and “How can spruce needles stay green in the winter?” We use several approaches to answer these questions, including genetics, genomics, bioinformatics, biochemistry and biophysics.


Your ground-breaking work on CRISPR led to you being awarded the Forest Biotechnologist of the Year award by the Institute of Forest Biosciences. Could you tell us more about this work, and the role you have played in the GM debate?

In our work on photosynthetic light harvesting, we have generated and/or analyzed different lines lacking an important regulatory protein; PsbS. PsbS mutants resulting from treatment with radiation or chemical mutagens can be grown anywhere without restriction, but those that are genetically modified by the insertion of disrupting ‘T-DNA’ are, in reality, forbidden to be grown. For years, I, and many other scientists, have pointed out that it does not make sense for plants with the same properties to be treated so differently by legislators. In science we treat such plants as equivalents; when we publish our results we could be required to confirm that the correct gene was investigated by using an additional T-DNA gene knock-out line or an RNAi plant (RNA interference, where inserted RNA blocks the production of a particular protein), but in the legislation they and the ‘traditionally mutated’ plants are opposites.

This has been the situation for many years, but it has been impossible to change. To challenge this, we set up an experiment using a targeted gene-editing approach called CRISPR/Cas9 to make a deletion in the PsbS gene, which resulted in a plant with a non-functional PsbS gene but no residual T-DNA. We asked the Swedish competent authority if this would be treated as a GM plant or not, arguing that it is impossible to know if it is a ‘traditional’ deletion mutant or a gene-edited mutant. In the end, the authority said that, according to their interpretation of the law, this cannot be treated as a GMO.

If this interpretation is also used in other countries, plant breeders will have access to gene-editing techniques to aid them in their work to generate new varieties, which would otherwise not be a possibility. The reason we did this was to provide the authorities with a concrete case, and one which was not linked to a company or commercial crop but rather something that everyone would realize could only be important for basic science. Therefore most of the arguments that are used against GMOs could not be used, and this should be a step forward in the debate.


Check out Stefan’s fantastic TEDxUmeå talk to hear more on the GM debate:

spps_logoYou are the President of the Scandinavian Plant Physiology Society, one of the Global Plant Council member organizations. Could you briefly outline the work of the SPPS?

We support plant scientists – not only plant physiologists – in the Nordic countries, organize meetings, publish a journal (Physiologia Plantarum), etc.


What are the most important benefits that SPPS members receive?

This is an issue that we discuss a lot in the society right now. Only a limited fraction of Nordic plant scientists are members – obviously are the benefits not large enough – and this is something that we intend to change in the coming years. We think, for example, that we need to be a better platform for networking between researchers and research centers, and have a lot of ideas that we would like to implement.


How does the GPC benefit the SPPS?

Although there are country- and region-specific issues important for plant scientists, the biggest issues are global. The arguments why we need plant science are basically the same whether you are a plant scientist in Umeå or Ouagadougou, therefore we all benefit from a global plant organization.


What do you see as important roles for the future of the GPC, both for SPPS and the wider community?

This is quite clear to me: we will contribute to saving the planet.


What advice would you give to early career researchers in plant science?

Your curiosity is your biggest asset, so take good care of it.


Is there anything else you’d like to add?

The challenge for the GPC is clearly to get enough resources to be able to fulfil its very worthwhile ambitions. GPC has made a good start: the vision is clear and the roadmap is there, which are two prerequisites, but additional resources are needed to employ people to realize these ambitions, build upon current successes, and perform the important activities. It is easy to say that if we all contribute with a small fraction of our time that would be sufficient, but we all have may other obligations and commitments, and a few dedicated people are needed in all organizations.