Sustainable, resilient, and nutritious food production with N8 AgriFood

This week we spoke with Dr Sally Howlett, a Knowledge Exchange Fellow with the N8 AgriFood Programme. (More on Sally at the end).

Sally, what is the N8 AgriFood Programme? When and why was it established?

The N8 Research Partnership is a collaboration of the eight most research-intensive universities in the North of England, namely Durham, Lancaster, Leeds, Liverpool, Manchester, Newcastle, Sheffield, and York. It is a not-for-profit organization with the aim of bringing together research, industry and society in joint initiatives. These partners have a strong track record of working together on large-scale, collaborative research projects, one of which is the N8 AgriFood Programme. This £16M multi-disciplinary initiative is funded by the N8 partners and HEFCE (The Higher Education Funding Council for England), and was launched in 2015 to address three key global challenges in Food Security: sustainable food production, resilient food supply chains, and improved nutrition and consumer behavior.

How does plant science research fit into the N8 AgriFood Programme?

There is a strong motivation to ‘think interdisciplinary’ when it comes to developing projects for the N8 AgriFood Programme; therefore, whilst the most obvious home for plant science may be within the theme of sustainable food production, e.g. crop improvement, we see no boundaries when it comes to integrating fundamental research in plant science with applications in all three of our research themes. The testing of research ideas in the ‘real world’ is supported by the five University farms within the N8, which include arable and livestock holdings.

We are launching a Crop Innovation Pipeline to assist with the translation of research into practical applications, with the first event taking place in Newcastle on 2nd-3rd May 2017. It is an opportunity for scientists from academia and industry and representatives from the farming community to discuss their ideas for the implementation of plant biology research into on-farm crop improvement strategies.

How is the work split between the different institutions? How is such a large-scale initiative managed?

Whilst there are many areas of shared expertise between the eight partner institutions, each also has its own areas of specialism within the agri-food arena. The strength of the N8 AgriFood Programme is in working collaboratively to identify complementary strengths and grow those areas in a synergistic way. In this way, we are collectively able to tackle research projects that would not be possible for a single university alone. Pump-priming funds are available at a local and strategic level to support this kick-starting of new multi-institution projects. The Programme itself is led out of the University of York, and each University has its own N8 AgriFood Chair in complementary areas across the Programme. Having both inward- and outward-facing roles, they work with the Knowledge Exchange Fellows and the Programme Lead for each theme to ensure activities at their own institute are connected with what is going on in the wider N8.

What does your work as a Knowledge Exchange Fellow entail?

As a Knowledge Exchange Fellow within the N8 AgriFood Programme, my initial contact with people usually begins with the question ‘What on earth does a Knowledge Exchange Fellow do?’ – and it can be quite difficult to answer! Although some form of knowledge transfer activity has been a defined output of research projects for some time now, knowledge exchange as an ongoing two-way dialogue between researchers and external stakeholders to enable a co-creation process has been less common until recently. Hence dedicated Knowledge Exchange Fellows with academic training are a relatively ‘new’, but growing, phenomenon.

My role is best described as acting as a bridge between the research community and non-academics with a vested interest in developing or using the findings of the research process. It is key to have a good understanding of the perspectives of all parties involved and be able to translate this into the appropriate language for a particular sector. Each of the N8 institutes has appointed Knowledge Exchange Fellow(s), and we work as a cohort to keep abreast of the latest developments in our fields in order to support the development of relationships and innovative projects. In such a huge undertaking, the phrase ‘there is strength in numbers’ is certainly apposite!

 

How does N8 AgriFood interact with companies?

N8 Agrifood engages with UK-based companies in many ways, including individual face-to-face meetings, attending and hosting networking events, participating in national exhibitions, and holding business-facing conferences. We also run a series of Industry Innovation Forums on various topics throughout the year. These provide a unique opportunity to discuss key challenges, identify problems and deliver new insights into innovation for agri-food, matching practical and technical industry challenges with the best research capabilities of the N8 universities.

 

How does N8 Agrifood interact with farmers?

As the engine of the agri-food industry, the views and collective experience of the farming community are vitally important in shaping the direction and content of the projects we develop. Co-hosting events with programs such as the ADAS Yield Enhancement Network (YEN), which involves over 100 farms, is one way that we connect with the sector. We are also working with agricultural societies to promote what we are doing and engage directly with their networks of farming members, e.g. the Yorkshire Agricultural Society’s Farmer Scientist Network. Last year we gave a series of seminars at the Great Yorkshire Show and are keen to encourage further collaboration with practicing farmers and growers across the UK.

 

Does N8 AgriFood collaborate with other research institutes around the world?

The N8 AgriFood Programme has strong international connections and actively welcomes working with international research institutes. Given the interconnectedness of our global food system, we feel that it is vital to link with overseas partners and that real impact can be had by bringing together top researchers from other countries to work together on problems. The value of N8 AgriFood as a one-stop shop is that we represent a large breadth and depth of expertise under a single umbrella, which greatly facilitates collaborating and finding suitable collaboration partners. Our pump-priming funds are a way for researchers to initiate new international partnerships, and we are also working to build links with global research organizations who have shared interests. For example, we recently visited Brazil and China to explore specific opportunities for collaboration and leveraging of research expertise and facilities, and are currently organizing a workshop in Argentina in March.

 

Where can readers get more information?

If you’d like to find out more, please visit our website: http://n8agrifood.ac.uk/, or consider attending one of our upcoming events:

 

All images are credited to the N8 Agrifood Programme.


Dr Sally Howlett is a Knowledge Exchange Fellow with the N8 AgriFood Programme. Her research background is in sustainable crop production and plant pest management.  After working on the control of invertebrate crop pests in New Zealand for several years, she returned to on-farm research in the UK and extended her focus to include the crops themselves taking a whole-systems view and comparing performance under conventional, organic and agroforestry management approaches. Sally’s role within N8 AgriFood provides a great opportunity to use her experience of agriculture and working with different actors across the sector to engage with external stakeholders, co-producing ideas and multi-disciplinary projects with applications throughout the agrifood chain.

Chickpea innovation: Revisiting the origins of crops to solve the challenges of modern agriculture

Doug Cook

Professor Doug Cook

This post was written by Professor Doug Cook (University of California, Davis), the Director of the Feed the Future Innovation Lab for Climate Resilient Chickpea. His current research spans both model and crop legume systems from a cellular to an ecosystem scale. 

 

The origins of modern human society derive, in large part, from the transition to an agrarian lifestyle that occurred in parallel at multiple locations around the world, including ~10,000 years ago in Mesopotamia*. Early agriculturalists wrought a revolution that would define human trajectory to the current day, domesticating wild plant and animal species into crops and livestock. The wild progenitors of chickpea, for example, were among a handful of Mesopotamian neo-crops, brought from hilly slopes into more fertile and cultivable plains and river valleys. In doing so, these farmers selected a small number of useful traits largely based on natural mutations that made wild forms amenable to agriculture, such as the consistency of flowering, upright growth, and seeds that remained attached to plants rather than dispersing.

Chickpea innovation

Doug Cook collecting chickpeas

Collecting wild chickpea plants, soil, and seed in southeastern Turkey. Image credit: Chickpea Innovation lab.

An unintended consequence of crop domestication was the loss of the vast majority of genetic diversity found in the wild populations. The Feed the Future Innovation Lab for Climate Resilient Chickpea at the University of California, Davis (Chickpea Innovation Lab) documented a ~95% loss of genetic variation from wild species to modern elite varieties. This reduction in genetic variation constrains our ability to adapt the chickpea crop to the range of challenges facing modern agriculture.

The Chickpea Innovation Lab is re-awakening the untapped potential of wild chickpea and directing that potential to solve global problems in agriculture, especially in the developing world.  Combining longstanding practices in ecology with the remarkable power of genomics and sophisticated computational methods, we have spanned the gap from the wild systems to cultivated crops. Beginning with the analysis of ~2,000 wild genomes, the simple technology of genetic crosses applied at massive scale has delivered a large and representative suite of wild variation into agricultural germplasm. These traits are now being actively used for phenotyping and breeding in the U.S., India, Ethiopia and Turkey, and our team is currently prospecting for tolerance to drought, heat and cold; increased pest and disease resistance; improved seed nutritional content; nitrogen fixation; plant architecture; and yield.

Characterizing wild germplasm

Sultan Mohammed Yimer

Visiting Ethiopian student, Sultan Mohammed Yimer investigating disease resistance in wild chickpea. Image credit: Chickpea Innovation lab.

Along the way, the Chickpea Innovation Lab has deposited wild germplasm into the multi-lateral system, providing open access to a treasure trove of genetic variation. The Chickpea Innovation Lab derives support from numerous sponsors whose funds enable the collection, characterization, and utilization of this vital germplasm resource.

International research

A unique strength of the lab is that our diverse sponsorship permits activities ranging from fundamental scientific investigation to applied agricultural research and product development.

An additional objective of the Lab is to train and educate students in the developing world. Towards that end, 18 international and nine domestic students, postdoctoral scientists and visiting faculty have received training in disciplines ranging from computational biology, plant pathology and entomology, to agricultural microbiology, and molecular genetics and breeding.

Chickpea breeding

Harvesting progeny derived by crossing wild and cultivated chickpea plants in Davis, California. Image credit: Chickpea Innovation lab.

* Mesopotamia, literally “between the rivers”, is the region of modern day southeastern Turkey, bounded by the Tigris and Euphrates rivers.

 

RNA clay offers green alternative to plant pesticides

By Neena Bhandari

A nano-sized bio-degradable clay-comprising double stranded ribonucleic acid (dsRNA) could offer a cost-effective, clean and green alternative to chemical-based plant pesticides.

Australian researchers from the University of Queensland have successfully used a gene-silencing spray, named BioClay, a combination of biomolecules and clay, to protect tobacco plants from a virus for 20 days with a single application. Their study has been published in Nature Plants.

“When BioClay is sprayed onto a plant, the virus-specific dsRNA is slowly released from the clay nanosheets into the plant. This activates a pathway in the plant that is a natural defence mechanism. The dsRNA is chopped up into small bits of RNA by enzymes of this pathway. These small bits attack the virus when it infects the plant without altering the plant genome,” explains lead researcher, Neena Mitter.

“Even with current pesticides, we lose up to 40 per cent of our crop productivity because of pests and pathogens. We are hoping that having BioClay in the mix as an environmentally friendly, sustainable crop protection measure will reduce crop losses,” Mitter adds.

“The clay-based delivery technology could represent a positive inflection point in the progress towards commercialisation of topical RNAi. This is a non-GM, environmentally benign and very specific technology.”

 John Killmer, APSE

While chemical-based pesticides kill the targeted insect, they can also affect a range of other insects that are beneficial. Mitter says, “BioClay is specific and it only kills the pathogen being targeted. Currently farmers use insecticides to kill the vector that comes with the viruses, but with BioClay we can target the virus itself.”

BioClay field trials may begin in Australia by year-end. “The first test will be on a virus that infects vegetable crops — capsicum, tomato, chilli,” Mitter tells SciDev.Net.

Farmers can use the existing equipment to deliver BioClay and the researchers are hopeful that it will be a commercially viable product for farmers everywhere. The clay component is cheap to make, but not the RNA.

Several companies like APSE, a US based startup, are working on the mass production of RNAs. APSE is developing RNA manufacturing technology for RNA interference (RNAi) or gene silencing applications.

“Our technology for RNA production should be ready in 2-3 years. We are targeting US$2 per gram,” APSE’s John Killmer tells SciDev.Net.

Killmer says, “The clay-based delivery technology could represent a positive inflection point in the progress towards commercialisation of topical RNAi. This is a non-GM, environmentally benign and very specific technology.”

RNAi technology is being used by many in the agriculture industry including the biotech firm Monsanto. The company’s BioDirect technology is focused on applications of RNAi directly onto the leaves of a plant.

Monsanto’s spokesperson John Combest tells SciDev.Net, “As insects develop resistance to certain classes of pesticides, giving farmers another option to control these pests is critical. The idea is not to replace any given system of farming, whether modern GM systems or others — it’s to provide farmers with products that can complement or replace agricultural chemical products.”

This piece was produced by SciDev.Net’s Asia & Pacific desk.

 

This article was originally published on SciDev.Net. Read the original article.

Break down barriers between seed banks and field study

By Marie Haga , Ann Tutwiler

Food biodiversity needs both systems, just like pandas need zoos and bamboo forests, say Marie Haga and Ann Tutwiler.

The efforts of many organisations mean that most of us understand the importance of conserving the biodiversity of wild animals and their habitats.  But few of us think about food in the same way we think about pandas, even though the issues are much the same.

The effective and efficient conservation of agricultural biodiversity — the biodiversity that’s important for providing the food we eat — is vital to meeting the global challenges of food and nutritional security for an expanding world population under the threat of climate change, and growing pressures on land and water.

And as with pandas and other wild animals, conservation of agricultural biodiversity can and must be done both in the laboratory and in the field.

From pandas to seeds

If you had a choice, would you rather see a panda in a zoo, or in the bamboo forests of southern China?

For most of us, seeing wild and endangered animals in their own habitat and watching how they behave, adapt and survive in their natural surroundings would be the preferred choice. But, the role of zoos in conserving wild and endangered animals is equally important.

Many zoos are home to breeding programmes. These can help re-introduce animals into wild areas from which they have disappeared, and maintain the genetic diversity of small populations of threatened species.  Zoos that are well-run carry out vital conservation research and can increase public support for conservation. And the only chance that most of us (and our kids) will have to see a panda is in a zoo.

Much in the same way, and for several decades now, dedicated researchers around the world have invested a great deal of effort in collecting and storing the seeds of different varieties of crops in genebanks, for what’s called ex situ conservation. Their collective work has created a precious global collection of over seven million seed, tissue, and other samples in many global and national genebanks.

“The problem is that systems of in situ and ex situ conservation have been largely disconnected for some time. Some conservationists even see them as antagonistic.

And while devotees of one side argue with the other, the diversity that underpins the food we eat is lost both in genebanks and in farmers’ fields.”

Marie Haga and Ann Tutwiler

At the same time, some concerns that apply to zoos — that they cannot maintain the evolutionary dynamics which allow ‘wild’ animals to evolve and adapt, for example — also apply to seed banks.

Researchers are increasingly recognising that in situ conservation is also important: maintaining crop and livestock diversity in farmers’ fields and farms, gardens, orchards, and the natural landscapes in which these are embedded.

A call for collaboration

Ex situ and in situ conservation each has their benefits.

It is relatively cheap to maintain crop diversity in a genebank, where it is safe from the vagaries of changing climates, and is readily accessible for research and breeding. But crop diversity stored in genebank is less accessible to farmers, and is not exposed to changing environments — which means it does not evolve and adapt.

On the other hand, crop diversity in farmers’ fields and under other in situ conditions, continues to evolve and adapt as a result of natural and human selections.  As it evolves and adapts, this genetic diversity contributes directly to the resilience and sustainability of agricultural systems, as well as to farmers’ livelihoods and to their empowerment. But there’s a downside: it is more difficult for breeders to use in their crop improvement programmes.

This shouldn’t be about choosing one over the other — the world needs both conservation systems, with good communication channels and knowledge transfer between them. This will help to properly conserve the genepools of crops and make them available for use into the future, for food and nutritional security.

The problem is that systems of in situ and ex situ conservation have been largely disconnected for some time. Some conservationists even see them as antagonistic.

And while devotees of one side argue with the other, the diversity that underpins the food we eat is lost both in genebanks and in farmers’ fields.

Crop diversity in farmer’s fields continues to decline in many parts of the world, often driven by market forces beyond the control of farmers’ themselves. Diversity is also lost from genebanks — a shortage of funding and staff means collections are often poorly maintained.

But if we stop looking at these two forms of conservation as antagonistic but rather as complementary, attention can be focused on what matters most: how best to safeguard this diversity for the future.

First steps

The First International Agrobiodiversity Conference is an opportunity to begin anew. That’s why practitioners in all these fields, from all over the world, both industrialized and developing, and from both the formal and informal sector, are coming together in New Delhi, India this week.

This congress gives conservation and agro-biodiversity experts and policy makers the opportunity to start mapping out a future that breaks down barriers between the two approaches, integrating them to ensure global food and nutritional security.

Most importantly, this means helping politicians and the public understand that conserving the diversity of our food is just as important as conserving the diversity of wild animals.

The congress is a first step in the right direction.

Marie Haga is executive director of The Crop Trust, and Ann Tutwiler is director general of Bioversity International. Haga can be contacted on Twitter at @CropTrust, and Tutwiler at @AnnTutwiler

 

This article was originally published on SciDev.Net. Read the original article.

Genome editing: an introduction to CRISPR/Cas9

Damiano Martignago

Dr Damiano Martignago, Rothamsted Research

This week’s blog post was written by Dr Damiano Martignago, a genome editing specialist at Rothamsted Research.

 

Genome editing technologies comprise a diverse set of molecular tools that allow the targeted modification of a DNA sequence within a genome. Unlike “traditional” breeding, genome editing does not rely on random DNA recombination; instead it allows the precise targeting of specific DNA sequences of interest. Genome editing approaches induce a double strand break (DSB) of the DNA molecule at specific sites, activating the cell’s DNA repair system. This process could be either error-prone, thus used by scientists to deactivate “undesired” genes, or error-free, enabling target DNA sequences to be “re-written” or the insertion of DNA fragments in a specific genomic position.

The most promising among the genome editing technologies, CRISPR/Cas9, was chosen as Science’s 2015 Breakthrough of the Year. Cas9 is an enzyme able to target a specific position of a genome thanks to a small RNA molecule called guide RNA (gRNA). gRNAs are easy to design and can be delivered to cells along with the gene encoding Cas9, or as a pre-assembled Cas9-gRNA protein-RNA complex. Once inside the cell, Cas9 cuts the target DNA sequence homologous to the gRNAs, producing DSBs.

CRISPR/Cas9

The guide RNA (sgRNA) directs Cas9 to a specific region of the genome, where it induces a double-strand break in the DNA. On the left, the break is repaired by non-homologous-end joining, which can result in insertion/deletion (indel) mutations. On the right, the homologous-directed recombination pathway creates precise changes using a supplied template DNA. Credit: Ran et al. (2013). Nature Protocols.

 

Genome editing in crops

Together with the increased data availability on crop genomes, genome editing techniques such as CRISPR are allowing scientists to carry out ambitious research on crop plants directly, building on the knowledge obtained during decades of investigation in model plants.

The concept of CRISPR was first tested in crops by generating cultivars that are resistant to herbicides, as this is an easy trait to screen for and identify. One of the first genome-edited crops, a herbicide-resistant oilseed rape produced by Cibus, has already been grown and harvested in the USA in 2015.

Wheat powdery mildew

Researchers used CRISPR to engineer a wheat variety resistant to powdery mildew (shown here), a major disease of this crop. Image credit: NY State IPM Program. Used under license: CC BY 2.0.

 

Using CRISPR, scientists from the Chinese Academy of Sciences produced a wheat variety resistant to powdery mildew, one of the major diseases in wheat. Similarly, another Chinese research group exploited CRISPR to produce a rice line with enhanced rice blast resistance that will help to reduce the amount of fungicides used in rice farming. CRISPR/Cas9 has also been already applied to maize, tomato, potato, orange, lettuce, soybean and other legumes.

Genome editing could also revolutionize the management of viral plant disease. The CRISPR/Cas9 system was originally discovered in bacteria, where it provided them with molecular immunity against viruses, but it can also be moved into plants. Scientists can transform plants to produce the Cas9 and gRNAs that target viral DNA, reducing virus accumulation; alternatively, they can suppress those plant genes that are hijacked by the virus to mediate its own diffusion in the plants. Since most plants are defenseless against viruses and there are no chemical controls available for plant viruses, the main method to stop the spread of these diseases is still the destruction of the infected plant. For the first time in history, scientists have an effective weapon to fight back against plant viruses.

Cassava brown streak disease

The cassava brown streak disease virus can destroy cassava crops, threatening the food security of the 300 million people who rely on this crop in Africa. Image credit: Katie Tomlinson (for more on this topic, read her blog here).

 

Genome editing will be particularly useful in the genetic improvement of many crops that are propagated mainly by vegetative reproduction, and so very difficult to improve by traditional breeding methods involving crossing (e.g. cassava, banana, grape, potato). For example, using TALENs, scientists from Cellectis edited a potato line to minimize the accumulation of reducing sugars that may be converted into acrylamide (a possible carcinogen) during cooking.

 

Concerns about off-targets

One of the hypothesized risks of using CRISPR/Cas9 is the potential targeting of undesired DNA regions, called off-targets. It is possible to limit the potential for off-targets by designing very specific gRNAs, and all of the work published so far either did not detect any off-targets or, if detected, they occurred at a very low frequency. The number of off-target mutations produced by CRISPR/Cas9 is therefore minimal, especially if compared with the widely accepted random mutagenesis of crops used in plant breeding since the 1950s.

 

GM or not-GM

Genome editing is interesting from a regulatory point of view too. After obtaining the desired heritable mutation using CRISPR/Cas9, it is possible to remove the CRISPR/Cas9 integrated vectors from the genome using simple genetic segregation, leaving no trace of the genome modification other than the mutation itself. This means that some countries (including the USA, Canada, and Argentina) consider the products of genome editing on a case-by-case basis, ruling that a crop is non-GM when it contains gene combinations that could have been obtained through crossing or random mutation. Many other countries are yet to issue an official statement on CRISPR, however.

Recently, scientists showed that is possible to edit the genome of plants without adding any foreign DNA and without the need for bacteria- or virus-mediated plant transformation. Instead, a pre-assembled Cas9-gRNA ribonucleoprotein (RNP) is delivered to plant cells in vitro, which can edit the desired region of the genome before being rapidly degraded by the plant endogenous proteases and nucleases. This non-GM approach can also reduce the potential of off-target editing, because of the minimal time that the RNP is present inside the cell before being degraded. RNP-based genome editing has been already applied to tobacco plants, rice, and lettuce, as well as very recently to maize.

In conclusion, genome editing techniques, and CRISPR/Cas9 in particular, offers scientists and plant breeders a flexible and relatively easy approach to accelerate breeding practices in a wide variety of crop species, providing another tool that we can use to improve food security in the future.
For more on CRISPR, check out this recent TED Talk from Ellen Jorgensen:


About the author

Dr Damiano Martignago is a plant molecular biologist who graduated from Padua University, Italy, with a degree in Food Biotechnology in 2009. He obtained his PhD in Biology at Roma Tre University in 2014. His experience with CRISPR/Cas9 began in the lab of Prof. Fabio Fornara (University of Milan), where he used CRISPR/Cas9 to target photoperiod genes of interest in rice and generate mutants that were not previously available. He recently moved to Rothamsted Research, UK, where he works as Genome Editing Specialist, transferring CRISPR/Cas9 technology to hexaploid bread wheat with the aim of improving the efficiency of genome editing in this crop. He is actively involved with AIRIcerca (International Association of Italian Scientists), disseminating and promoting scientific news.

Please consider making a donation to the Global Plant Council

As a reader of our blog, we know that you are passionate about the power of plant science to tackle global challenges, such as food security, climate change, and human health.

The Global Plant Council is dedicated to promoting plant science collaborations across borders to address global challenges in a sustainable way. We are a strong voice for science, but as a not-for-profit organization we need your support.

Help us to keep supporting researchers and plant science by making a single or monthly donation today, via our secure PayPal system.

Click here to visit our donations page, then click the PayPal button to process your payment.

Thank you!

Battening down the hatches: priming plant defense

This week’s blog post was written by Dr. Mike Roberts (Lancaster University, UK).

Dr. Mike Roberts

Dr. Mike Roberts, Lancaster University, UK, Mike with an experiment to test the effects of parental herbivory on defense priming in the next generation of Arabidopsis plants. (Photo credit: Lancaster University)

It is widely accepted that achieving agricultural sustainability means reducing our reliance on synthetic agrochemicals. One major group of agrochemicals is pesticides, which include the insecticides and fungicides that protect crop plants against pests and diseases. Pests and diseases aren’t going to go away, so reducing pesticide usage means that alternative crop protection approaches are needed. EU Directive 2009/128/EC (Sustainable Use of Pesticides) recommends the use of integrated pest and disease management (IPM) – the combined use of multiple approaches that together provide sufficient protection.

Our contribution to this challenge has been to identify ways in which we might enhance a plant’s own natural defense mechanisms. Plants have a wide array of structural and chemical defenses that they can employ to fight off enemies. Many of these are inducible, meaning that they are only activated in response to attack, which allows plants to balance the costs and benefits of defense. For crop plants, these costs can often translate into reduced yields. Spraying with compounds that switch on inducible defenses, such as the plant hormones jasmonic acid (JA) and salicylic acid (SA), can make plants more resistant, but this approach also risks unwanted growth reductions.

The JA team

(Left to right) Jane Taylor, Mike Roberts and Nigel Paul, who led the research on defense priming using seed treatments, in the glasshouse at the Lancaster Environment Center. (Photo credit: Lancaster University)

Fortunately, evolution has produced another way of regulating inducible defenses that we can take advantage of: the phenomenon we refer to as ‘priming’. When we ourselves get infected with something like a virus, our immune system generates antibodies to quickly fight it off, but it also produces memory cells that can respond to the same infection many months, or even years, in the future, with a more rapid and effective immune response. This is the basis of the familiar concept of vaccination. While plants don’t make antibodies, they are nevertheless able to alter future patterns of defense activation in response to previous infection by disease or feeding by herbivorous insects; thus, priming results in a faster and stronger activation of future inducible defense responses.

 

Benefits of plant defense priming

Transgenerational immune priming enhances disease resistance in Arabidopsis. All the plants in the photograph were inoculated by spraying the whole tray with a suspension of Pseudomonas syringae bacteria. The plants on the right side of the photo are from seed collected from parent plants that were infected with the same P. syringae bacteria, whilst those on the left come from healthy parents. (Photo credit: Belinda Ameyaw)

 

If we can find ways to prime defenses in crop plants, we might be able to improve pest and disease resistance with minimal impacts on yield. One way to do this is through seed treatments. We found that treating seeds with the defense hormone JA provides long-term enhanced resistance against herbivory and some fungal diseases, without affecting growth and development. We were able to patent this discovery, and the approach has since been successfully commercialized. The same approach can also be used to prime defenses against other forms of biotic and abiotic stress.

Seed treatment

Tomato seeds being treated with jasmonic acid solution. (Photo credit: Lancaster University)

How and why seed treatments provide long-term defense priming can be explained by the phenomenon of transgenerational immune priming, which my lab has also been investigating. After our success with the seed treatment, we wondered, “What if seeds were exposed to hormones like JA during the course of their development on the parent plant?” We tested this by infecting plants with bacteria or exposing them to herbivores, and then examined defense in their offspring. Remarkably, we saw that priming responses established in the parent were passed on to the offspring; something we refer to as transgenerational immune priming.

The evidence we have at present suggests that the mechanism for this heritable stress memory is epigenetic, meaning the genes that control priming are chemically tagged to alter their activity. These epigenetic modifications don’t involve changes in the DNA sequence and are reversible, allowing rapid, flexible responses to environmental stress. Understanding the nature of these epigenetic changes may provide another way to exploit priming for crop protection. Introducing the right epigenetic marks onto genes in elite crop varieties may enable the priming of defense without altering their genetic make-up. Given the difficulty of introducing new chemical and biological methods of crop protection, which require time-consuming and costly regulatory approval before they can be brought to market, this could prove an especially attractive option in the future.

Does Australia hold the key to food security?

This article is reposted from the Devex blog with kind permission from the author, Lisa Cornish.

CIAT research

Plant samples in the genebank at the International Center for Tropical Agriculture’s Genetic Resources Unit, at the institution’s headquarters in Colombia. Credit: Neil Palmer / CIAT. Used under license: CC BY-SA 2.0.

It was too dry in the Australian region of Wimmera to produce crops last summer. This year, floods are set to wipe out yields again. Like a number of other regions across the planet, climate change is starting to be felt.

“It’s like this every year somewhere,” said Sally Norton, head of the Australian Grains Genebank, which stores diverse genetic material for plant breeding and research.

For Norton and many of her colleagues in agricultural genetics, the picture is increasingly clear: The variety of crops used today are not able to withstand the changing conditions and changes expected in the future.

Australia’s biodiversity may offer some help, according to discussions at the recent International Genebank Managers Annual General Meeting held in Horsham, Victoria. The gathering, which brings together 11 countries, focused on how to better conserve seeds, build databases to manage collections, boost capacity across the world and fill gaps in genebanks.

Researchers are particularly interested in crop wilds, “the ancestors of our domesticated crops,” Marie Haga, executive director of the The Crop Trust, explained to Devex. Australia is one of the richest sources of these seeds. “It’s like the wolf being the ancestor to our domesticated dogs. Crop wild relatives have traits that we have lost in the domestication process — they might need less water, might live in unfriendly conditions, may be resistant to pests and diseases.”

As climate change continues to batter agricultural yields, crop wild relatives could provide resilience. The seeds give breeders and farmers new options of plant varieties with traits to withstand a variety of conditions based on the harsh climates they are found — drought, fire, flood, poor soil, high salinity.

For Haga, crop wild relatives are a solution for food security. “The challenge is that many of the varieties widely used in modern agriculture are very vulnerable, because we have been breeding on the same line and they are adapted to very specific environment,” Haga said. Varieties that flourish today, she said, could wither as the climate fluctuates.

“Utilization of the natural diversity of crops is key to the future,” she said. “The climate is rapidly changing and we need to feed a growing population with more nutritious food. It is very hard to see how we can do this unless we go back to the building blocks of agriculture.”

Norton agreed: “Crop wild relatives have an amazing adaptability to changing conditions,” she told Devex. “When we talk about food security, we are talking about getting varieties in farm paddocks that have greater resilience to extreme conditions. It may not be the highest yield, but you are going to get something from this crop.”

Why have they been overlooked?

Crop wild relatives have so far been underutilized in the research and breeding process of crops.

“We have this fabulous natural diversity out there including 125,000 varieties of wheat and 200,000 varieties of rice.” Haga said. “We have not at all unlocked the potential of these crops.”

One reason is a dearth of research. “Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives,” a 10-year project led by Haga to ensure long-term conservation of crop wild relatives, conducted a global survey of distribution and conservation and found that of 1,076 known wild relatives for 81 crops, more than 95 percent are insufficiently represented in genebanks and 29 percent are completely missing. They are missing purely due to the fact that they have yet to be collected.

“Genebank managers are generally open to include crop wild relatives in their collections.” Haga said. “It’s just quite simply that not enough work has been done in this area and the full potential is yet to be realized,” she said.

At the moment, seeds are being collected in 25 countries around the world as part of the crop wild relative project, but it is Australia that has been identified as one of the richest sources for crop wild relatives in the world. Because of the continent’s low population density and vast, undisturbed natural environment, a wide variety of species have been conserved, said Norton.

Australia holds significant diversity of wild relatives of rice, sorghum, pigeon pea, banana, sweet potato and eggplant currently missing from global collections, according to research by the Australian Seed Bank Partnership. Forty species have been prioritized for collection with high hopes that they will enable crops to withstand the harsh environmental conditions in which Australian species are found.

There are still many areas of Australia yet to be surveyed, and the full extent of its agricultural riches may yet to be tapped.

Australian researchers will play an important role in pre-breeding local species of wild relatives to improve their use in breeding programs. Crop wild relatives have historically been used in a variety of crops including synthetic wheat, but Australian native wild relatives have been harder to include in the breeding process.

“In the next 10 to 15 years it would be surprising if there is not something coming out that hasn’t got a component of Australian native wild relative in it,” Norton said who is currently involved in the collection of Australian crop wild relatives.

Collection of crop wild relatives is time sensitive

There is an urgency to collect crop wild relatives. Not only are wild species needed now to support changing environmental conditions affecting crops and farming, urbanization is putting crop wild relatives at risk of disappearing.

“We need to collect these sooner rather than later,” Norton told Devex. “Urbanization has a big impact on any native environment, let alone crop wild relatives. We know what species on our target list are more threatened than others — urbanization, flooding and fire are all risks to their security. We certainly have a priority list of species to collect and we need to make sure we target the ones that are under threat first.”

Once the varieties are conserved, breeders and farmers will need to be convinced to start using crop wild relatives. Many are already on board. “Most breeders understand these wild relatives have great potential,” Haga said.

Still, wild relatives can be difficult to work with and produce a lower yield. Haga expects there to be some reluctance, though limited.

“The understanding of the need is increasing and we feel very confident that this material will be used and some of them may be the game changer we are looking for,” she said.

The plans for crop wild relatives

Haga’s 10-year project on crop wild relatives is halfway complete. They are nearing the end of the collection phase and entering the pre-breeding process, before they are able to breed and deliver new species to farmers.

Australian support for the program includes an agreement for additional amount of $5 million. That comes on top of previous support of $21.2 million to the Crop Diversity Endowment Fund, which supports crop diversity globally and with a focus on the Indo-Pacific. Brazil, Chile, Germany, Japan, New Zealand, Norway, Switzerland and the United States are among other supporters of the endowment fund that hopes to reach $850 million. In Australia, further resources are still required to fund and support better seed collection at home.

Globally, plans for crop wild relatives includes raising greater awareness of their potential and importance.

“We have a big job to do to create awareness of the important of crop diversity generally and crop wild relatives specifically,” Haga said. “We have been speaking for years about biodiversity in birds and fish and a range of other animals, but we have talked very little about conserving the diversity of crops. I will fight for all types of diversity, but especially plants.”


 

This article is reposted from the Devex blog with kind permission from the author, Lisa Cornish.

Temperate matters in agriculture

twittergfsblogthumbnailevangeliakougioumoutzinov2016

Most of the world’s food is produced in temperate zones. The Global Food Security program’s Evangelia Kougioumoutzi reports on the TempAg network.

Agricultural production in temperate regions is highly productive with a significant proportion of global output originating from temperate (i.e. non-tropical) countries – 21% of global meat production and 20% of global cereal production [link opens PDF] originate from Europe alone. This proportion is very likely to increase in light of climate change.

Temperature zones

Little fluffy clouds: temperate zones are well suited to agricultural production. Image credit: connect11/Thinkstock

TempAg is an international research collaboration network that was established to increase the impact of agricultural research and inform policy making in the world’s temperate regions. Its work does not solely focus on research, but also provides insights into current thinking through mapping existing scientific findings and outstanding knowledge gaps. In this way, the network aspires to become a platform for the alignment of national agricultural research and food partnership programs (such as Global Food Security) that will enable the development of more effective agricultural policies with a long-term vision.

Since its official inauguration in Paris in April 2015, TempAg has been leading a series of on-going workstreams around:

  • Boosting resilience of agricultural production systems at multiple scales and levels
  • Optimising land management for ecosystem services and food production
  • Improving sustainability of food productivity in the farms & enterprise level

You can read more about these themes on the TempAg website: http://tempag.net/themes/.

Future foresights

After 18 months of existence, TempAg held a foresight workshop in London on 5–7 October to determine its future priorities.

Forty delegates took part in the workshop, coming from the 14 different countries in the temperate region, and from academia, policy, industry, and professionals at the science–policy interface. Through a series of presentations and interactive sessions, participants were invited to consider what the current and future challenges are in temperate agriculture, taking into account the needs of policy makers and industry in helping them to improve sustainable agriculture practices.

 

Temperate zones

Temperate zones cover much of the world’s major food-growing areas. Image from Wikipedia/CIA-Factbook

 

To tackle sustainability in temperate agriculture, there is a need to better manage risks and stresses (both biotic and abiotic), as well as finding ways to manage the restoration of natural capital, ecosystem services, and soils. During the workshop, it was noted that utilizing the diversity within different agricultural systems, via identifying the best practice and using the appropriate technological mix, may be a way forward in making production systems more sustainable.

Participants stressed the importance of taking a holistic view of the sustainability agenda within agriculture, without just focusing on environmental aspects. This means also taking into consideration socioeconomic factors, such as making food value chains (like turning milk into cheese), more equitable by identifying who gets the equity from the food commodities’ prices, or identifying what the optimum legal framework for sharing data might be.

The group also considered sustainable agriculture issues from a policy and industry needs angle. It was interesting to see that dealing with shocks (environmental, socioeconomic, and technological) featured highly in this discussion as well. It was suggested that increasing resilience to these shocks could be facilitated via the widespread diffusion of existing technologies. Engaging with farmers during this time would be necessary to identify technology uptake barriers.

Forward moves

Future-proofing agricultural resilience and enhancing the capacity to respond to shocks was deemed an urgent priority, so the development of a comprehensive map identifying the multiple shocks that could impact on farm resilience in temperate zones might be a future workstream for TempAg. Work in this area could help develop models to assess the flexibility within agricultural production systems.

 

What we eat is largely based on the types of food we produce. Therefore, healthy diets are intrinsically linked with our production systems. Another area of interest for TempAg could be to explore what the nutritional value of crops should be for better health, and what a nutritional diet will look like for sustainable temperate agriculture. Developing frameworks in this area could further inform future farming practices in temperate areas.

Since TempAg’s initiation, two major global policy agendas have been adopted by the international community: the Sustainable Development Goals and the Paris COP21 agreement. Identifying what types of data and scientific evidence policy makers will need to achieve the agriculture-relevant targets was another area where TempAg could focus its activity moving forward.

Finally, delegates highlighted areas of work that could help to build more effective policies with a longer-term vision. These included developing economic tools for valuing natural capital and ecosystem services, as well as integrated assessment tools to monitor the performance and impact (environmental cost) of existing policies.

This article is cross-posted with the Global Food Security blog.


About Evangelia Kougioumoutzi

Evangelia is International Coordinator & Programme Manager for the Global Food Security program (GFS). Before joining GFS, Evangelia worked as an Innovation Manager for GFS partners BBSRC. She holds a PhD in plant development and genetics from the University of Oxford.

 

Professor Stefan Jansson on what makes a GMO, and the Scandinavian Plant Physiology Society

This week we speak to Professor Stefan Jansson, Umeå University, Sweden, who is the President of one of the Global Plant Council member organizations, the Scandinavian Plant Physiology Society (SPPS). He tells us more about his fascinating work, his prominent role in the GM debate, and his thoughts on the work of the SPPS and GPC, both now and in the future.

Stefan_Jansson

Could you tell us a little about your areas of research interest?

I have worked on (too) many things within plant science, but now I am focused on two subjects: “How do trees know that it is autumn?”, and “How can spruce needles stay green in the winter?” We use several approaches to answer these questions, including genetics, genomics, bioinformatics, biochemistry and biophysics.

 

Your ground-breaking work on CRISPR led to you being awarded the Forest Biotechnologist of the Year award by the Institute of Forest Biosciences. Could you tell us more about this work, and the role you have played in the GM debate?

In our work on photosynthetic light harvesting, we have generated and/or analyzed different lines lacking an important regulatory protein; PsbS. PsbS mutants resulting from treatment with radiation or chemical mutagens can be grown anywhere without restriction, but those that are genetically modified by the insertion of disrupting ‘T-DNA’ are, in reality, forbidden to be grown. For years, I, and many other scientists, have pointed out that it does not make sense for plants with the same properties to be treated so differently by legislators. In science we treat such plants as equivalents; when we publish our results we could be required to confirm that the correct gene was investigated by using an additional T-DNA gene knock-out line or an RNAi plant (RNA interference, where inserted RNA blocks the production of a particular protein), but in the legislation they and the ‘traditionally mutated’ plants are opposites.

This has been the situation for many years, but it has been impossible to change. To challenge this, we set up an experiment using a targeted gene-editing approach called CRISPR/Cas9 to make a deletion in the PsbS gene, which resulted in a plant with a non-functional PsbS gene but no residual T-DNA. We asked the Swedish competent authority if this would be treated as a GM plant or not, arguing that it is impossible to know if it is a ‘traditional’ deletion mutant or a gene-edited mutant. In the end, the authority said that, according to their interpretation of the law, this cannot be treated as a GMO.

If this interpretation is also used in other countries, plant breeders will have access to gene-editing techniques to aid them in their work to generate new varieties, which would otherwise not be a possibility. The reason we did this was to provide the authorities with a concrete case, and one which was not linked to a company or commercial crop but rather something that everyone would realize could only be important for basic science. Therefore most of the arguments that are used against GMOs could not be used, and this should be a step forward in the debate.

 

Check out Stefan’s fantastic TEDxUmeå talk to hear more on the GM debate:

spps_logoYou are the President of the Scandinavian Plant Physiology Society, one of the Global Plant Council member organizations. Could you briefly outline the work of the SPPS?

We support plant scientists – not only plant physiologists – in the Nordic countries, organize meetings, publish a journal (Physiologia Plantarum), etc.

 

What are the most important benefits that SPPS members receive?

This is an issue that we discuss a lot in the society right now. Only a limited fraction of Nordic plant scientists are members – obviously are the benefits not large enough – and this is something that we intend to change in the coming years. We think, for example, that we need to be a better platform for networking between researchers and research centers, and have a lot of ideas that we would like to implement.

 

How does the GPC benefit the SPPS?

Although there are country- and region-specific issues important for plant scientists, the biggest issues are global. The arguments why we need plant science are basically the same whether you are a plant scientist in Umeå or Ouagadougou, therefore we all benefit from a global plant organization.

 

What do you see as important roles for the future of the GPC, both for SPPS and the wider community?

This is quite clear to me: we will contribute to saving the planet.

 

What advice would you give to early career researchers in plant science?

Your curiosity is your biggest asset, so take good care of it.

 

Is there anything else you’d like to add?

The challenge for the GPC is clearly to get enough resources to be able to fulfil its very worthwhile ambitions. GPC has made a good start: the vision is clear and the roadmap is there, which are two prerequisites, but additional resources are needed to employ people to realize these ambitions, build upon current successes, and perform the important activities. It is easy to say that if we all contribute with a small fraction of our time that would be sufficient, but we all have may other obligations and commitments, and a few dedicated people are needed in all organizations.