Global Plant Council Blog

Plant Science for Global Challenges

Category: Interviews (page 1 of 4)

Putting Big Data to Work with ARPA-E’s TERRA Program

This week we spoke to Dr. Joe Cornelius, the Program Director at the Advanced Research Projects Agency – Energy (ARPA-E). His work focusses on bioenergy production and conversion as a renewable and sustainable energy source, transportation fuel, and chemical feedstock, applying innovations in biotechnology, genomics, metabolic engineering, molecular breeding, computational analytics, remote sensing, and precision robotics to improve biomass energy density, production intensity, and environmental impacts.

 

What is ARPA-E? How are programs created?

The Advanced Research Projects Agency-Energy (ARPA-E) is a young government agency in the U.S. Department of Energy. The agency is modeled on a successful Defense Department program, the Defense Advanced Research Projects Agency (DARPA). Both agencies target high-risk, high-reward research in early-stage technologies that are not yet ready for private-sector investment.

Program development is one of the unique characteristics of the agency. ARPA-E projects are in the hands of term-limited program directors, who develop a broad portfolio of concepts that could make a large impact in the agency’s three primary mission areas: energy security, energy efficiency, and emissions reductions. The agency motto is “Changing what’s possible”, and we are always asking ourselves, “if it works, will it matter?”. Getting a program approved is a lot like a doing a PhD; you survey the field, host a workshop, determine key points to research, define aggressive performance metrics, and finally defend the idea to the faculty. If the idea passes muster, the agency makes a targeted investment. This flexibility was recently noticed as one of the great aspects of ARPA-E culture and is an exciting part of the job.

 

What is TERRA and how is it new for agriculture?

TERRA stands for Transportation Energy Resources from Renewable Agriculture, and its impact mission is to accelerate genetic gains in plant breeding. This is an advanced analytics platform for plant breeding. Today, significant scientific progress is possible through the convergence of diverse technologies, and TERRA’s innovation for breeders comes through the integration of remote sensing, computer vision, analytics, and genetics. The teams are using robots to carry cameras to the field and then extracting phenotypes and performing gene linkages. It’s really awesome to see.

 

This is run by the U.S. Department of Energy. How does TERRA tie into energy?

The United States has a great potential to generate biomass for conversion to cellulosic ethanol, but the crops useful for producing this biomass have not seen the improvement that others, such as soybeans or maize, have had. TERRA is focused on sorghum, which is a productive and resilient crop with existing commercial infrastructure that can yield advanced biomass on marginal lands. In addition, sorghum is a key food and feed crop, and the rest of the world will benefit from these advancements.

 

How does TERRA address the challenge of phenotyping in the field?

The real challenges that remain are in calibrating the sensor output and generating biological insight. A colleague from the United Kingdom, Tony Pridmore, captured the thought well, saying “Photography is not phenotying.” It’s generally easy to take the pictures — unless it’s very windy, the aerial platforms can pass over any crop, and the ground platforms are based on proven agricultural equipment. To get biological insights however, each team requires an analytics component, and a team from IBM is contributing their analytics expertise in collaboration with Purdue University.

 

 

What is most exciting about the TERRA program?

We commissioned the world’s biggest agricultural field robot, which phenotypes year-round. The six teams have successfully built other lightweight platforms involving tractors, rovers, mini-bots, and fixed and rotary wing unmanned aerial vehicles. It’s exciting to see some of the most advanced technologies move so quickly into the hands of great geneticists. The amazing thing is how quickly the teams have started generating phenotyping data. I expected it to take years before we got to this point, but the teams are knocking it out of the park, and we are entering into full-blown breeding systems deployment.

 

Who’s on the TERRA teams? How did you build the program?

ARPA-E system teams include large businesses, startups, and university groups. The program was built to have a full portfolio of diverse sensor suites, robotic platform types (ground and aerial), analytics approaches, and geographic breadth. Because breeders are working for a particular target population of environments, different phenotypes are valued differently across the various geographies. For that reason, each group is collecting its own set of phenotypes. Beyond that, we’ve worked very hard to encourage collaboration across the teams and have an exciting GxE (genotype x environment) experiment running, where several teams plant the same germplasm across multiple geographies. By combining this with high-throughput phenotyping, the teams are in a good position to determine key environmental inputs to various traits.

 

Once we achieve rapid-fire field phenotyping, what’s next?

We’re going underground! ARPA-E has made another targeted investment, this time in root phenotyping. We’re really excited about this one. It’s a very similar concept, but the sensing is so much harder. The teams have collaborated with medical, mining, aerospace, and defense communities for technologies that can allow us to observe root and soil systems in the field to allow breeders to improve crops.  Ask us again next year—we will have some cool updates to both programs!

The Regulator’s perspective: Why some gene-edited plants are not GM-regulated in Sweden

Staffan Eklof

Dr. Staffan Eklöf, Swedish Board of Agriculture

At July’s New Breeding Technologies workshop held in Gothenburg, Sweden, Dr. Staffan Eklöf, Swedish Board of Agriculture, gave us an insight into their analysis of European Union (EU) regulations, which led to their interpretation that some gene-edited plants are not regulated as genetically modified organisms. We speak to him here on the blog to share the story with you.

 

Could you begin with a brief explanation of your job, and the role of the Competent Authority for GM Plants / Swedish Board of Agriculture?

I am an administrative officer at the Swedish Board of Agriculture (SBA). The SBA is the Swedish Competent authority for most GM plants and ensures that EU regulations and national laws regarding these plants are followed. This includes issuing permits.

 

You reached a key decision on the regulation of some types of CRISPR-Cas9 gene-edited plants. Before we get to that, could you start by explaining what led your team to start working on this issue?

It started when we received questions from two universities about whether they needed to apply for permission to undertake field trials with some plant lines modified using CRISPR/Cas9. The underlying question was whether these plants are included in the gene technology directive or not. According to the Swedish service obligation for authorities, the SBA had to deliver an answer, and thus had to interpret the directive on this point.

 

Arabidopsis thaliana

Image credit: INRA, Jean Weber. Used under license: CC BY 2.0.

 

Could you give a brief overview of Sweden’s analysis of the current EU regulations that led to your interpretation that some CRISPR-Cas9 gene-edited plants are not covered by this legislation?

The following simplification describes our interpretation pretty well; if there is foreign DNA in the plants in question, they are regulated. If not, they are not regulated.

Our interpretation touches on issues such as what is a mutation and what is a hybrid nucleic acid. The first issue is currently under analysis in the European Court of Justice. Other ongoing initiatives in the EU may also change the interpretations we made in the future, as the directive is common for all member states in the EU.

 

CRISPR-Cas9 is a powerful tool that can result in plants with no trace of transgenic material, so it is impossible to tell whether a particular mutation is natural. How did this influence your interpretation?

We based our interpretation on the legal text. The fact that one cannot tell if a plant without foreign DNA is the progeny of a plant that carried foreign DNA or the result of natural mutation strengthened the position that foreign DNA in previous generations should not be an issue. It is the plant in question that should be the matter for analysis.

Arabidopsis thaliana

Image credit: Frost Museum. Used under license: CC BY 2.0.

Does your interpretation apply to all plants generated using CRISPR-Cas9, or a subset of them?

It applies to a subset of these gene-edited plants. CRISPR/Cas9 is a tool that can be used in many different ways. Plants carrying foreign DNA are still regulated, according to our interpretation.

 

What does your interpretation mean for researchers working on CRISPR-Cas9, or farmers who would like to grow gene-edited crops in Sweden?

It is important to note that, with this interpretation, we don’t remove the responsibility of Swedish users to assess whether or not their specific plants are included in the EU directive. We can only tell them how we interpret the directive and what we request from the users in Sweden. Eventually I think there will be EU-wide guidelines on this matter. I should add that our interpretation is also limited to the types of CRISPR-modified plants described in the letters from the two universities.

 

Crops

Will gene-edited crops be grown in Europe in the future? Image credit: Richard Beatson. Used under license: CC BY 2.0.

We are currently waiting for the EU to declare whether CRISPR-Cas9 gene-edited plants will be regulated in Europe. Have policymakers in other European countries been in contact with you regarding Sweden’s decision process?

Yes, there is a clear interest; for example, Finland handled a very similar case. Other European colleagues have also shown an interest.

 

What message would you like plant scientists to take away from this interview? If you could help them to better understand one aspect of policymaking, what would it be?

Our interpretation is just an interpretation and as such, it is limited and can change as a result of what happens; for example, what does not require permission today may do tomorrow. Bear this in mind when planning your research and if you are unsure, it is better to ask. Moreover, even if the SBA (or your country’s equivalent) can’t request any information about the cultivation of plants that are not regulated, it is good to keep us informed.

I think it is vital that legislation meets reality for any subject. It is therefore good that pioneers drive us to deal with difficult questions.

The Global Plant Council visits the Australian Plant Phenomics Facility

This post is republished with the kind permission of the Australian Plant Phenomics Facility (APPF). 

We at the APPF love visits from our global plant science community, so it was a treat to host Ruth Bastow, Executive Director of the Global Plant Council (GPC), this week.

While she was here, we took the opportunity to ask a few quick questions:

Ruth Bastow at the Australian Plant Phenomics Facility

Ruth Bastow, Executive Director of the Global Plant Council in high-throughput phenotyping Smarthouse™ at the Australian Plant Phenomics Facility’s Adelaide node

Ruth, could you tell us a little bit about the GPC?

The GPC is a not-for-profit coalition of national, regional, and international societies and affiliates representing thousands of plant, crop, agricultural, and environmental scientists. We bring together all those involved in plant and crop research, education and training, to provide a body that can speak with a single, strong voice in the policy and decision-making arena, and to promote plant science research and teaching around the world.

What do you do there?

As Executive Director of the GPC I am responsible for the day to day management of the organisation.

What is the reason for your visit here?

To meet up and discuss GPC initiatives with colleagues here at the University of Adelaide, to further develop current collaborations and hopefully initiate new ones.

For example the Australian Plant Phenomics Facility (APPF) is partner of the Diversity Seek Initiative (DivSeek). DivSeek is a global community driven effort consisting of a diverse set of partner organisations have voluntarily come together to enable breeders and researchers to mobilise a vast range of plant genetic variation to accelerate the rate of crop improvement and furnish food and agricultural products to the growing human population. DivSeek brings together large-scale genotyping and phenotyping projects, computational and data standards projects with the genebanks and germplasm curators. The aim is to establish DivSeek as a hub to connect and promote interactions between these players and activities and to establish common state-of-the-art techniques for data collection, integration and sharing. This will improve the efficiency of each project by eliminating redundancy and increasing the availability of data to researchers around the world to address challenges in food and nutritional security, and to generate societal and economic benefit.

So, whilst I am here, I will be learning about how the APPF team collate and analyse their data and try and understand how the approaches here could be translated into solutions for the wider community. For example, the Zegami platform used in the high-throughput phenotyping Smarthouses™ at the Adelaide node is a useful visualisation tool that could benefit others.

Where else have you visited?

Whilst I am here in Australia I have been working with colleagues in Canberra including Prof Barry Pogson who is currently the chair of the Global Plant Council, Dr Xavier Sirault (APPF node based at CSIRO), Prof Justin Borevitz (APPF node based at ANU), and Dr Norman Warthmann. I will also be taking time to visit friends in Sydney and on the Central Coast.

Where do you see plant phenomics research in 5-10 years time?

High throughput and field based phenotyping has seen huge transformational change in the last decade and in the next 5-10 years I hope that it will start to become part of the everyday toolkit of plant science researchers in the way that genomics has.

If you could solve one plant science question what would it be?

I would actually like to try and solve a social/conceptual problem that effects science rather than an actual biological question and that is the sharing of data, information, knowledge and best practice. The sharing of scientific theories, including experimental data and observations has been a core concept of the scientific endeavour since the enlightenment. Sharing allows others to evaluate research (peer review), to identify errors, and allow ideas to be corroborated, invalidated and built upon. It also facilitates the transmission of concepts and theories to a wider audience and that will hopefully inspire others to get involved in science, contribute ideas and further our understanding of the world around us.

However, the current systems of reward and evaluation in science; lack of appropriate mechanisms, standard and infrastructures to easily share and access information; and in some cases the debilitating effects of ‘IP thickets’ can act as a barrier to ‘open science’. It is not all bad news. In the last decade a number of changes at the government, funder, publisher and institutional level have promoted and facilitated the concept of open science. However, if science is to be a truly open endeavour it will require a change in mind-set at many levels to migrate towards a culture where open data is the norm. Without this we will not be able to fully realise the investment in research, in terms of both finance provided and the time and intellectual contribution of the individual involved, and contribute to developing solutions that will help ameliorate current global problems.

When I am not working I am?

Walking the dog or gardening and generally enjoying the beauty of my home in South Wales in the UK.

If you could have one super power what would it be?

For my work it would probably be telepathy or omnilinguism, as most problems seems to arise from lack of understanding or miscommunication at some level, so these would be very helpful superpowers. From a personal perspective perhaps the ability to predict the future would be good.


Thanks again to the APPF for giving us permission to republish this blog post!


About the APPF

The APPF is a national facility, available to all Australian plant scientists, offering access to infrastructure that is not available at this scale or breadth in the public sectors anywhere else in the world. The APPF is based around automated image analysis of the phenotypic characteristics of extensive germplasm collections and large breeding, mapping and mutant populations. It exploits recent advances in robotics, imaging and computing to enable sensitive, high throughput analyses to be made of plant growth and function. New technologies are being developed to ensure that the APPF remains at the international forefront of plant science. Research networks and established pathways to market ensure outcomes are delivered for the long-term benefit for Australian scientists and primary producers.

Using plants to convert explosives to fertilizers: an interview with Neil Bruce

Neil Bruce

Professor Neil Bruce

This week we spoke to Professor Neil Bruce, whose research at the University of York (UK) focuses on metabolic pathways. His insights into the detoxification of pollutants by plants and microorganisms has led to promising new solutions to help clean up polluting explosives from military testing.

 

Could you begin by telling us a little about your research interests?

I have very broad research interests that often revolve around finding enzymes for biotechnological applications. A particular focus of my lab is the biochemistry and molecular genetics of plant and microbial metabolism of xenobiotic (foreign) compounds, such as environmental pollutants. Elucidating these metabolic pathways often results in the discovery of new enzymes that catalyze interesting chemistries. Being a biologist at heart, I’m interested in the evolutionary origin of these enzymes, but also by studying their structure and function I’m exploring how these enzymes can be engineered to further improve their properties for a particular application, such as environmental remediation or biocatalysis.

 

 

You spoke at the GARNet 2016 meeting about engineering plants to remediate explosives pollution. Could you explain what this problem is and how it affects both people and the environment?

Explosive compounds used in munitions are highly toxic and the potential for progressive accumulation of such compounds in soil, plants, and groundwater is a significant concern at military sites. It is estimated that in the US alone, 10 million hectares of military land is contaminated with components of munitions. The explosives mainly used in artillery, mortars and bombs are 2,4,6-trinitrotoluene (TNT) and Composition B (containing TNT and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)). The US Department of Defense estimated that the clean-up of unexploded ordnance, discarded military munitions and munition constituents on its active ranges would cost between $16 billion and $165 billion. Explosives pollution is, however, a global problem, with large amounts of land and groundwater contaminated by TNT and RDX, including polluted sites in the UK that date back to the First and Second World Wars. Explosives pollution will continue to be a pressing issue while there is a requirement for military to train and the existence of armed conflict requires munitions to be manufactured. There is an urgent need to develop sustainable in situ technologies to contain and treat these pollutants.

 

TNT toxicity in plants

TNT is toxic to plants because of the actions of an enzyme called monodehydroascorbate reductase, which breaks TNT down into a toxic form. Plants lacking this enzyme, such as the mdhar6 mutant plants on the right, can grow very well on TNT-polluted soil. Credit: Johnston et al. (2015).

 

How did you develop the idea of using plants to remove explosives pollution? What benefits do plants have over the microorganisms from which the enzymes are obtained?

We have worked closely with the UK Ministry of Defence and US Army to understand the fate of explosives in the environment. Knowledge of their effects on biological systems is important, as this information can be used to support the management of contaminated sites. We have, therefore, been uncovering the molecular mechanisms behind these detoxification processes in plants, and have used this knowledge, in combination with studies on the bacterial degradation of pollutants, to successfully engineer transgenic plants able to remediate toxic explosive pollutants in a process called ‘phytoremediation’.

An innovative aspect of our work has been the use of genetic engineering to combine the biodegradative capabilities of explosives-degrading bacteria with the high biomass, stability and detoxification systems inherent in plants. While it is possible to find explosives-degrading bacteria on polluted land, they do not degrade the explosives fast enough to prevent leaching into the groundwater. Our engineered transgenic plant systems, however, can efficiently remove toxic levels of TNT and RDX from contaminated soil and water.

 

You mentioned that you are currently testing transgenic switchgrass to remove RDX and TNT pollution in the US. Why did you choose this species and have you considered developing other species suited to different environments?

Plants appropriate for the phytoremediation of explosives need to be adaptable to conditions on military ranges, for example, they need good fire tolerance, and to be able to grow over a wide geographical range. Switchgrass meets these criteria, and is also deep-rooting, can be grown on marginal lands, and researchers can benefit from established methods for genetically engineering switchgrass. We have also been engineering other grass species and have considered fast-growing deep-rooting trees such as poplar.

 

Turning explosives into fertilizers

In a poetic twist, rather than turning fertilizers into explosives, Professor Bruce’s phytoremediating plants convert explosives into fertilizer. Credit: Neil Bruce.

 

How quickly can engineered plants remove this pollution?

In the lab these plants can remove levels of explosives pollution found in the environment within a matter of days. We are currently carrying out field trials with our transgenic plants on a military site in the US, to observe their phytoremediation effectiveness in the real world. If these trials are successful, a number of demonstration studies on contaminated sites will be required to convince end users of the benefits of phytoremediation for remediating and maintaining military land. These demonstration studies will also allow us to evaluate any risks, which will be important to obtain further approval from the US Department of Agriculture to be able to use these plants on a larger scale.

 

What other projects are you working on? Could you elaborate on any recent discoveries?

As well as explosives, we are also working on the use of plants to extract platinum group metals (PGMs) from mining waste. PGMs are used in an ever-expanding array of technologies and demand is spiralling upwards; however, these are rare and expensive to mine. It is essential that these metal reserves are utilized and recycled responsibly, not dispersed and lost into the environment. Plants can take up metals from their environment and, in the case of PGMs, can deposit them as nanoparticles within their tissues. Importantly, we have recently shown that plants containing palladium nanoparticles can also be used to make efficient biocatalysts, and we are currently using synthetic biology in plants to improve palladium uptake and nanoparticle formation.

 


More information:

Johnston, E.J., Rylott, E.L., Beynon, E., Lorenz, A, Chechik, V. and Bruce, N.C. (2015) Monodehydroascorbate reductase mediates TNT toxicity in plants. Science. 349: 1072-1075.

Gunning, V., Tzafestas, K., Sparrow, H., et al. (2014) Arabidopsis glutathione transferases U24 and U25 exhibit a range of detoxification activities with the environmental pollutant and explosive, 2,4,6-trinitrotoluenePlant Physiol. 165: 854-865.

Rylott, E.L.. Budarina, M.V., Barker, A., Lorenz, A., Strand, S.E. and Bruce, N.C. (2011) Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT. New Phytologist, 192: 405-413.

« Older posts