Global Plant Council Blog

Plant Science for Global Challenges

Tag: collaboration (page 1 of 2)

State of the art research meets breeding for wheat’s future

By Mathew Reynolds, Wheat Physiologist at, CIMMYT

First post of our “Global Collaboration” series

Wheat is the most widely grown crop in the world, currently providing about 20 percent of human calorie consumption.  However, demand is predicted to increase by 60 percent within just 30 years, while long-term climate trends threaten to reduce wheat productivity, especially in less developed countries.  

Ravi Singh presents rust resistance wheat trials to SAGARPA officials. Ciudad Obregon, Mexico 2017. Credit: CIMMYT/Alfonso Cortés

CIMMYT, HeDWIC and IWYP

For over half a century, the International Wheat Improvement Network (IWIN), coordinated by CIMMYT, has been a global leader in breeding and disseminating improved wheat varieties to combat this problem, with a major focus on the constraints of resource poor farmers.

Two complementary networks — the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the International Wheat Yield Partnership (IWYP) — are helping to meet the future demand for wheat consumption through global collaboration and technological partnership.

By harnessing the latest technologies in crop physiology, genetics and breeding, network researchers support the development of new varieties that aim to be more climate resilient, in the case of HeDWIC and with higher yield potential, in the case of IWYP

Novel approaches

These novel approaches to collaboration take wheat research from the theoretical to the practical and incorporate science into real-life breeding scenarios.  Methods such as screening genetic resources for physiological traits related to radiation use efficiency and identifying common genetic bases for heat and drought adaptation are leading to more precise breeding strategies and more data for models of genotype-by-environment interaction that help build new plant types and experimental environments for future climates.

IWYP addresses the challenge of raising the genetic wheat yield potential of wheat by up to 50 percent in the next two decades. Achieving this goal requires a strategic and collaborative approach to enable the best scientific teams from across the globe to work together in an integrated program. TheIWYP model of collaboration fosters linkages between ongoing research platforms to develop a cohesive portfolio of activities that maximizes the probability of impact in farmers’ fields IWYP research uses genomic selection to complement the crossing of complex traits by identifying favorable allele combinations among progeny.  The resulting products are delivered to national wheat programs worldwide through the IWIN international nursery system.

Wheat field trip
Credit: CIMMYT

Recently, IWYP research achieved genetic gains through the strategic crossing of biomass and harvest index — source and sink — an approach that also validates the feasibility of incorporating exotic germplasm into mainstream breeding efforts.

In the case of HeDWIC, intensified — and possibly new — breeding strategies are needed to improve the yield potential of wheat in hotter and drier environments. This also requires a combined effort, using genetic diversity with physiological and molecular breeding and bioinformatic technologies, along with the adoption of improved agronomic practices by farmers. The approach already has proof of concept in the release and adoption of three heat and drought tolerant lines in Pakistan.

Next

It is imperative to build increased yield and climate-resilience to into future germplasm in order to avoid the risk of climate-related crop failure and to maintain global food security in a warmer climate. Partnerships like HeDWIC and IWYP give hope to meeting this urgent food security challenge.

 Further readings:

https://www.hedwic.org/resources.htm

https://iwyp.org/publications

https://royalsocietypublishing.org/doi/full/10.1098/rspb.2012.2190

An economist’s perspective on plant sciences: Under-appreciated, over-regulated and under-funded

Chinese plant science and Journal of Experimental Botany

Jonathan IngramThis week’s post was written by Jonathan Ingram, Senior Commissioning Editor / Science Writer for the Journal of Experimental Botany. Jonathan moved from lab research into publishing and communications with the launch of Trends in Plant Science in 1995, then going on to New Phytologist and, in the third sector, Age UK and Mind.

 

In this week of the XIXth International Botanical Congress (IBC) in Shenzhen, it seems appropriate to highlight outstanding research from labs in China. More than a third of the current issue of Journal of Experimental Botany is devoted to papers from labs across this powerhouse of early 21st century plant science.

Collaborations are key, and this was a theme that came up time again at the congress. The work by Yongzhe Gu et al. is a fine example, involving scientists at four institutions studying a WRKY gene in wild and cultivated soybean: in Beijing, the State Key Laboratory of Systematic and Evolutionary Botany at the Institute of Botany in the Chinese Academy of Sciences, and the University of the Chinese Academy of Sciences; and in Harbin (Heilongjiang), the Crop Tillage and Cultivation Institute at Heilongjiang Academy of Agricultural Sciences, and the College of Agriculture at Northeast Agricultural University. Interest here centers on the changes which led to the increased seed size in cultivated soybean with possible practical application in cultivation and genetic improvement of such a vital crop.

 

Crops and gardens

Botanic gardens are also part of the picture. In another paper in the same issue, Yang Li et al. from the Key Laboratory of Tropical Plant Resources and Sustainable Use at Xishuangbanna Tropical Botanical Garden in Kunming (Yunnan) and the University of the Chinese Academy of Sciences in Beijing present research on DELLA-interacting proteins in Arabidopsis. Here the authors show that bHLH48 and bHLH60 are transcription factors involved in GA-mediated control of flowering under long-day conditions.

IBC 2017

Naturally, research on rice is important. Wei Jiang et al. from the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University (Wuhan) describe their research on WOX11 and the control of crown root development in the nation’s grain of choice, which will be important for breeders looking to increase crop yields and resilience.

The other work featured is either in Arabidopsis or plants of economic importance: Fangfang Zheng et al. (Qingdao Agricultural University, also with collaborators in Maryland) and Xiuli Han et al. (Beijing); Yun-Song Lai et al. (Beijing/Chengdu – cucumber), Wenkong Yao et al. (Yangling, Shaanxi – Chinese grapevine, Vitis pseudoreticulata), and Xiao-Juan Liu et al. (Tai-an, Shandong – apple).

 

Development of plant science

Shenzehn has grown rapidly and is now highly significant for life science as home to the China National GeneBank (CNGB) project led by BGI Genomics. The vision as set out by Huan-Ming Yang, chairman of BGI-Shenzhen, is profound – from sequencing what’s already here, often in numbers per species, to innovative synthetic biology.

Shenzehn is also home to another significant institution, the beautiful and scientifically important Fairy Lake Botanic Garden. At the IBC, the importance of biodiversity conservation for effective, economically focused plant science, but also for so many other reasons to do with our intimate relationship with plants and continued co-existence on the planet, was a central theme.

The research highlighted in Journal of Experimental Botany is part of the wider, positive growth of plant science (and, indeed, botany) not just in China, but worldwide. The Shenzehn Declaration on Plant Sciences with its seven priorities for strategic action, launched at the congress, will be a guide for the right development in coming years.

The Global Plant Council visits the Australian Plant Phenomics Facility

This post is republished with the kind permission of the Australian Plant Phenomics Facility (APPF). 

We at the APPF love visits from our global plant science community, so it was a treat to host Ruth Bastow, Executive Director of the Global Plant Council (GPC), this week.

While she was here, we took the opportunity to ask a few quick questions:

Ruth Bastow at the Australian Plant Phenomics Facility

Ruth Bastow, Executive Director of the Global Plant Council in high-throughput phenotyping Smarthouse™ at the Australian Plant Phenomics Facility’s Adelaide node

Ruth, could you tell us a little bit about the GPC?

The GPC is a not-for-profit coalition of national, regional, and international societies and affiliates representing thousands of plant, crop, agricultural, and environmental scientists. We bring together all those involved in plant and crop research, education and training, to provide a body that can speak with a single, strong voice in the policy and decision-making arena, and to promote plant science research and teaching around the world.

What do you do there?

As Executive Director of the GPC I am responsible for the day to day management of the organisation.

What is the reason for your visit here?

To meet up and discuss GPC initiatives with colleagues here at the University of Adelaide, to further develop current collaborations and hopefully initiate new ones.

For example the Australian Plant Phenomics Facility (APPF) is partner of the Diversity Seek Initiative (DivSeek). DivSeek is a global community driven effort consisting of a diverse set of partner organisations have voluntarily come together to enable breeders and researchers to mobilise a vast range of plant genetic variation to accelerate the rate of crop improvement and furnish food and agricultural products to the growing human population. DivSeek brings together large-scale genotyping and phenotyping projects, computational and data standards projects with the genebanks and germplasm curators. The aim is to establish DivSeek as a hub to connect and promote interactions between these players and activities and to establish common state-of-the-art techniques for data collection, integration and sharing. This will improve the efficiency of each project by eliminating redundancy and increasing the availability of data to researchers around the world to address challenges in food and nutritional security, and to generate societal and economic benefit.

So, whilst I am here, I will be learning about how the APPF team collate and analyse their data and try and understand how the approaches here could be translated into solutions for the wider community. For example, the Zegami platform used in the high-throughput phenotyping Smarthouses™ at the Adelaide node is a useful visualisation tool that could benefit others.

Where else have you visited?

Whilst I am here in Australia I have been working with colleagues in Canberra including Prof Barry Pogson who is currently the chair of the Global Plant Council, Dr Xavier Sirault (APPF node based at CSIRO), Prof Justin Borevitz (APPF node based at ANU), and Dr Norman Warthmann. I will also be taking time to visit friends in Sydney and on the Central Coast.

Where do you see plant phenomics research in 5-10 years time?

High throughput and field based phenotyping has seen huge transformational change in the last decade and in the next 5-10 years I hope that it will start to become part of the everyday toolkit of plant science researchers in the way that genomics has.

If you could solve one plant science question what would it be?

I would actually like to try and solve a social/conceptual problem that effects science rather than an actual biological question and that is the sharing of data, information, knowledge and best practice. The sharing of scientific theories, including experimental data and observations has been a core concept of the scientific endeavour since the enlightenment. Sharing allows others to evaluate research (peer review), to identify errors, and allow ideas to be corroborated, invalidated and built upon. It also facilitates the transmission of concepts and theories to a wider audience and that will hopefully inspire others to get involved in science, contribute ideas and further our understanding of the world around us.

However, the current systems of reward and evaluation in science; lack of appropriate mechanisms, standard and infrastructures to easily share and access information; and in some cases the debilitating effects of ‘IP thickets’ can act as a barrier to ‘open science’. It is not all bad news. In the last decade a number of changes at the government, funder, publisher and institutional level have promoted and facilitated the concept of open science. However, if science is to be a truly open endeavour it will require a change in mind-set at many levels to migrate towards a culture where open data is the norm. Without this we will not be able to fully realise the investment in research, in terms of both finance provided and the time and intellectual contribution of the individual involved, and contribute to developing solutions that will help ameliorate current global problems.

When I am not working I am?

Walking the dog or gardening and generally enjoying the beauty of my home in South Wales in the UK.

If you could have one super power what would it be?

For my work it would probably be telepathy or omnilinguism, as most problems seems to arise from lack of understanding or miscommunication at some level, so these would be very helpful superpowers. From a personal perspective perhaps the ability to predict the future would be good.


Thanks again to the APPF for giving us permission to republish this blog post!


About the APPF

The APPF is a national facility, available to all Australian plant scientists, offering access to infrastructure that is not available at this scale or breadth in the public sectors anywhere else in the world. The APPF is based around automated image analysis of the phenotypic characteristics of extensive germplasm collections and large breeding, mapping and mutant populations. It exploits recent advances in robotics, imaging and computing to enable sensitive, high throughput analyses to be made of plant growth and function. New technologies are being developed to ensure that the APPF remains at the international forefront of plant science. Research networks and established pathways to market ensure outcomes are delivered for the long-term benefit for Australian scientists and primary producers.

1000 Plants

The 1000 plants initiative (1KP) is a multidisciplinary consortium aiming to generate large-scale gene sequencing data for over 1000 species of plants. Included in these species are those of interest to agriculture and medicines, as well as green algae, extremophytes and non-flowering plants. The project is funded by several supporters, and has already generated many published papers.

Gane Wong is a Professor in the Faculty of Science at the University of Alberta in Canada. Having previously worked on the Human Genome Project, he now leads the 1KP initiative. Dennis Stevenson, Vice President for Botanical Research, New York Botanical Garden, and Adjunct Professor, Cornell University (USA), studies the evolution and classification of the Cycadales. He became involved in the 1KP initiative as an opportunity to sample the breadth of green plant diversity.

We spoke to both Professor Stevenson (DS) and Professor Wong (GW) about the initiative. Professor Douglas Soltis from Florida Museum of Natural History also contributed to this blog post with input in editing the answers.

What do you think has been the biggest benefit of 1KP?

DS: This has been an unparalleled opportunity to reveal and understand the genes that have led to the plant diversity we see around us. We were able to study plants that were pivotal in terms of plant evolution but which have not previously been included in sequencing projects as they are not considered important economically

The 1KP project presented a fantastic opportunity to explore plant biodiversity. Photo by Bob Leckridge. Used under Creative Commons 2.0.

The 1KP project presented a fantastic opportunity to explore plant biodiversity. Photo by Bob Leckridge. Used under Creative Commons 2.0.

GW: The project was funded by the Government of Alberta and the investment firm Musea Ventures to raise the profile of the University of Alberta. Notably there was no requirement by the funders to sequence any particular species. I was able to ask the plant science community what the best possible use of these resources would be. The community was in full agreement that the money should be used to sample plant diversity.

Hopefully our work will change the thinking at the funding agencies regarding the value of sequencing biodiversity.

What techniques were utilized in this project to carry out the research?

GW: Complete genomes were too expensive to sequence. Many plants have unusually large genomes and de novo assembly of a polyploid genome remains difficult. To overcome this problem, we sequenced transcriptomes. However, this made our sample collection more difficult as the tissue had to be fresh. In addition, when we started the project, the software to assemble de novo transcriptomes did not work particularly well. I simply made a bet that these problems would be solved by the time we collected the samples and extracted the RNA. For the most part that’s what happened, although we did end up developing our own assembly software as well!

The 1KP initiative is an international consortium. How has the group evolved over time and what benefits have you seen from having this diverse set of skills?

GW: 1KP would not be where it is today without the participation of scientists around the world from many different backgrounds. For example, plant systematists who defined species of interest and provided the tissue samples worked alongside bioinformaticians who analyzed the data, and gene family experts who are now publishing fascinating stories about particular genes.

 DS: One of the great things about this project is how it has evolved over time as new researchers became involved. There is no restriction on who can take part, which species can be studied or which questions can be asked of the data. This makes the 1KP initiative unique compared to more traditionally funded projects.

GW: We continually encouraged others to get involved and mine our data for interesting information. We did a lot of this through word of mouth and ended up with some highly interesting, unexpected discoveries. For example, an optogenetics group at MIT and Harvard used our data to develop new tools for mammalian neurosciences. This really highlights the importance of not restricting the species we study to those of known economic importance.

According to ISI outputs from this research, two of the most highly cited papers from 1KP are here and here.

You aimed to investigate a highly diverse array of plants. How many plants of the major phylogenetic groups have now been sequenced, and are you still working on expanding the data set?

DS: A lot of thought went into the species selection. We aimed for proportional representation (by number of species) of the major plant groups. We also aimed to represent the morphological diversity of those groups.

GW: Altogether, we generated 1345 transcriptomes from 1174 plant species.

Has this project lead to any breakthroughs in our understanding of the phylogeny of plants?

DS: This will be the first broad look at what the nuclear genome has to tell us, and the first meaningful comparison of large nuclear and plastid data sets. However, due to rapid evolution plus extinction, many parts of the plant evolutionary tree remain extremely difficult to solve.

Hornworts are non-vascular plants that grow in damp, humid places. Photo by Jason Hollinger. Used under Creative Commons License 2.0.

Hornworts are non-vascular plants that grow in damp, humid places. Photo by Jason Hollinger. Used under Creative Commons License 2.0.

One significant breakthrough was the discovery of horizontal gene transfer from a hornwort to a group of ferns. This was unexpected and very interesting in terms of the ability of those ferns to be able to accommodate understory habitats.

GW: With regard to horizontal gene transfer, there are papers in the pipeline that will illustrate the discovery of even more of these events in other species. We have also studied gene duplications at the whole genome and gene family level. This is the most comprehensive survey ever undertaken, and people will be surprised at the scale of the discoveries. However, we will be releasing our findings shortly as part of a series and it would be unwise for us to give the story away here! Keep a look out for these!

« Older posts