Chinese plant science and Journal of Experimental Botany

Jonathan IngramThis week’s post was written by Jonathan Ingram, Senior Commissioning Editor / Science Writer for the Journal of Experimental Botany. Jonathan moved from lab research into publishing and communications with the launch of Trends in Plant Science in 1995, then going on to New Phytologist and, in the third sector, Age UK and Mind.

 

In this week of the XIXth International Botanical Congress (IBC) in Shenzhen, it seems appropriate to highlight outstanding research from labs in China. More than a third of the current issue of Journal of Experimental Botany is devoted to papers from labs across this powerhouse of early 21st century plant science.

Collaborations are key, and this was a theme that came up time again at the congress. The work by Yongzhe Gu et al. is a fine example, involving scientists at four institutions studying a WRKY gene in wild and cultivated soybean: in Beijing, the State Key Laboratory of Systematic and Evolutionary Botany at the Institute of Botany in the Chinese Academy of Sciences, and the University of the Chinese Academy of Sciences; and in Harbin (Heilongjiang), the Crop Tillage and Cultivation Institute at Heilongjiang Academy of Agricultural Sciences, and the College of Agriculture at Northeast Agricultural University. Interest here centers on the changes which led to the increased seed size in cultivated soybean with possible practical application in cultivation and genetic improvement of such a vital crop.

 

Crops and gardens

Botanic gardens are also part of the picture. In another paper in the same issue, Yang Li et al. from the Key Laboratory of Tropical Plant Resources and Sustainable Use at Xishuangbanna Tropical Botanical Garden in Kunming (Yunnan) and the University of the Chinese Academy of Sciences in Beijing present research on DELLA-interacting proteins in Arabidopsis. Here the authors show that bHLH48 and bHLH60 are transcription factors involved in GA-mediated control of flowering under long-day conditions.

IBC 2017

Naturally, research on rice is important. Wei Jiang et al. from the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University (Wuhan) describe their research on WOX11 and the control of crown root development in the nation’s grain of choice, which will be important for breeders looking to increase crop yields and resilience.

The other work featured is either in Arabidopsis or plants of economic importance: Fangfang Zheng et al. (Qingdao Agricultural University, also with collaborators in Maryland) and Xiuli Han et al. (Beijing); Yun-Song Lai et al. (Beijing/Chengdu – cucumber), Wenkong Yao et al. (Yangling, Shaanxi – Chinese grapevine, Vitis pseudoreticulata), and Xiao-Juan Liu et al. (Tai-an, Shandong – apple).

 

Development of plant science

Shenzehn has grown rapidly and is now highly significant for life science as home to the China National GeneBank (CNGB) project led by BGI Genomics. The vision as set out by Huan-Ming Yang, chairman of BGI-Shenzhen, is profound – from sequencing what’s already here, often in numbers per species, to innovative synthetic biology.

Shenzehn is also home to another significant institution, the beautiful and scientifically important Fairy Lake Botanic Garden. At the IBC, the importance of biodiversity conservation for effective, economically focused plant science, but also for so many other reasons to do with our intimate relationship with plants and continued co-existence on the planet, was a central theme.

The research highlighted in Journal of Experimental Botany is part of the wider, positive growth of plant science (and, indeed, botany) not just in China, but worldwide. The Shenzehn Declaration on Plant Sciences with its seven priorities for strategic action, launched at the congress, will be a guide for the right development in coming years.

Registration open for GPC/SEB New Breeding Technologies Workshop!

New Breeding Technologies in the Plant Sciences – Applications and Implications in Genome Editing

Gothenburg, Sweden, 7-8th July 2017

REGISTRATION FOR THIS MEETING IS NOW OPEN!

Organised by: Dr Ruth Bastow (Global Plant Council), Dr Geraint Parry (GARNet), Professor Stefan Jansson (Umeå University, Sweden) and Professor Barry Pogson (Australian National University, Australia).

Targeted genome engineering has been described as a “game-changing technology” for fields as diverse as human genetics and plant biotechnology. Novel techniques such as CRISPR-Cas9, Science’s 2015 Breakthrough of the Year, are revolutionizing scientific research, allowing the targeted and precise editing of genomes in ways that were not previously possible.

Used alongside other tools and strategies, gene-editing technologies have the potential to help combat food and nutritional insecurity and assist in the transition to more sustainable food production systems. The application and use of these technologies is therefore a hot topic for a wide range of stakeholders including scientists, funders, regulators, policy makers and the public. Despite its potential, there are a number of challenges in the adoption and uptake of genome editing, which we propose to highlight during this SEB satellite meeting.

One of the challenges that scientists face in applying technologies such as CRISPR-Cas9 to their research is the technique itself. Although the theoretical framework for using these techniques is easy to follow, the reality is often not so simple. This meeting will therefore explain the principles of applying CRISPR-Cas9 from experts who have successfully used this system in a variety of plant species. We will explore the challenges they encountered as well as some of the solutions and systems they adopted to achieve stably transformed gene-edited plants.

The second challenge for these transformative technologies is how regulatory bodies will treat and asses them. In many countries gene editing technologies do not fit within current policies and guidelines regarding the genetic modification and breeding of plants, as it possible to generate phenotypic variation that is indistinguishable from that generated by traditional breeding methods. Dealing with the ambiguities that techniques such as CRISPR-Cas9 have generated will be critical for the uptake and future use of new breeding technologies. This workshop will therefore outline the current regulatory environment in Europe surrounding gene editing, as well as the approaches being taken in other countries, and will discuss the potential implications and impacts of the use of genome engineering for crop improvement.

Overall this meeting will be of great interest to plant and crop scientists who are invested in the future of gene editing both on a practical and regulatory level. We will provide a forum for debate around the broader policy issues whilst include opportunities for in-depth discussion regarding the techniques required to make this technology work in your own research.

This meeting is being held as a satellite event to the Society for Experimental Biology’s Annual Main Meeting, which takes place in Gothenburg, Sweden, from the 3–6th July 2017.

Flipping the symposium

screen-shot-2016-10-24-at-18-38-05

Answers to the question: “Which crop species are most critical with regard to stress resilience?”

Lisa Martin, GPC Outreach & Communications Manager

GPC Executive Director Ruth Bastow and I recently travelled to Australia to hold the GPC’s annual general meeting – but we didn’t go all that way for a one-day meeting! We also took the opportunity to attend ComBio 2016, a large conference jointly hosted by the Australian Society for Biochemistry and Molecular Biology, the Australia and New Zealand Society for Cell and Developmental Biology, and GPC Member Organization the Australian Society of Plant Scientists.

Sadly, one person was conspicuous by his absence – GPC President Bill Davies, who had been due to give more than one talk at the conference, was unable to fly out to Australia at very short notice. While Ruth and our Chair Professor Barry Pogson could cover his talk during the GPC’s own lunchtime symposium, this left Dr Rainer Hofmann’s ‘Abiotic Stress and Climate Change’ session one speaker short at the last minute!

Answers to the question, "Which challenges do these crops face?"

Answers to the question, “Which challenges do these crops face?”

Fortunately Rainer, who happens to be a representative to the GPC for the New Zealand Society of Plant Biology, found a quick solution to the hole in his program: it was time for a bit of audience participation!

The ‘flipped classroom’ is an approach I’d heard of, but was not overly familiar with – however, according to Rainer it is used quite extensively in New Zealand, where plant biologists can be geographically isolated. Unlike the traditional university lecture, in which the teacher gives a presentation and the students go away to consolidate what they have learned with revision notes or problems to solve, the flipped classroom turns this model on its head. Instead, students are given the subject content to learn in advance, then bring their own questions to the lecture.

Arguably, this approach makes better use of students’ contact time and the lecturer’s expertise, and provides a richer and more independent learning experience. This model also works very well in distance learning: topic notes and presentation slides can be emailed out in advance, then a video-linked webinar can be used to connect students and teachers, and a web-tool like Socrative Student can be used to ask and answer questions online.

Answers to the question, "What are key solutions to address these challenges, in the next 3 years and in the longer term?"

Answers to the question, “What are key solutions to address these challenges, in the next 3 years and in the longer term?”

Rainer used this idea to fill the gap in his symposium – and it was great! He asked three important questions, and members of the audience were invited to provide short answers via the Socrative Student platform using their computers, cell phones or tablets – answers were then displayed on a screen in real time. Thank goodness for WiFi! The questions and answers can be seen in the word clouds we’ve created here – the size of the word provides an indication of the frequency of that particular response, so it’s easy to see which were the most and least popular answers. These responses provided useful, engaging stimuli for audience-led discussion – I’d really like to see this model used at other meetings!

The three questions asked were:

  1. Which crop species are most critical with regard to stress resilience?
  2. Which challenges do these crops face?
  3. What are key solutions to address these challenges, a) in the next three years, and b) in the longer term?

What would your answers have been? Leave us a comment below!

Stress Resilience: Call for papers for a JXB Special Issue!

GPC banner Without linkFollowing the recent Stress Resilience Symposium and Discussion Forum that we co-hosted in Brazil last month with the Society for Experimental Biology, we are pleased to announce a call for papers for a forthcoming Special Issue of the SEB’s Journal of Experimental Botany.

Achieving food security in a changing and unpredictable climate urgently requires a better understanding of the mechanisms by which plants interact with and respond to their environments. This special issue will bring together a collection of papers highlighting the best current research in stress resilience contributing to global efforts to develop crops and cropping systems that are better able to deal with fluctuating and stressful environmental conditions.

Proposals are invited for the submission of new and innovative research papers that contribute to this goal (submission before the end of January 2016 will guarantee inclusion in the special issue pending positive peer review). Confirmed contributors already include: Andrew Borrell (University of Queensland, Australia), Elizabete Carmo-Silva (Lancaster University, UK), Scott Chapman (CSIRO, Australia), Bill Davies (GPC President and Lancaster University, UK), Lyza Maron (Cornell University, USA), Jianbo Shen (China Agricultural University), and Roberto Tuberosa (University of Bologna, Italy).

If you would like to contribute a paper, please email a title and short abstract to Mary Traynor: [email protected].