Global Plant Council Blog

Plant Science for Global Challenges

Tag: SciDev (page 1 of 2)

Potatoes, allies on Earth and on Mars

By
Zoraida Portillo (Perú)

[LIMA] A joint initiative between NASA and the International Potato Centre (CIP), which is based in Peru, offers scientific evidence that it is possible to grow at least four types of potatoes on Mars.

A scenario starring the root crop was portrayed in the movie “The Martian” (2015), in which a lost astronaut, played by Matt Damon, survives on potatoes he cultivates on the red planet while awaiting rescue.

But in addition to this interplanetary possibility, scientists also observed the crop is genetically suited to adapting to the changes creating more adverse environmental conditions on Earth.

So before turning fiction into reality, the tuber has a mission on Earth.

papa-en-marte-1-pelicula1.jpg

In the movie “The Martian”, Matt Damon survives eating the potatoes he cultivates on Martian soil. Credit: 20th Century Fox.

The hardy potato quartet
papa-en-marte-2-CIP.jpg

Scientists have studied 65 types of potatoes and have identified four that could grow successfully on Martian soil. Credit: International Potato Center / Mars Project

The study has identified four types of potatoes, out of 65 examined, which have shown resistance to high salinity conditions and were able to form tubers in a type of soil similar to that on Mars.
One of these is the Tacna variety, developed in Peru in 1993. It was introduced to China shortly afterwards, where it showed high tolerance to droughts and saline soils with hardly any need for irrigation.

This variety became so popular in China that it was ‘adopted’ in 2006 under the name of Jizhangshu 8. The same high tolerance was seen on the saline and arid soils of Uzbekistan, a country with high temperatures and water shortages, where the variety was also introduced and renamed as Pskom.

papa-en-marte-3-tacna in china.jpg

In China, the Peruvian Tacna potato variety was renamed Jizhangshu 8. Credit: International Potato Center 

The second variety that passed the salinity test is being cultivated in coastal areas of Bangladesh that have high salinity soils and high temperatures. The other two types are promising clones — potatoes that are being tested for attributes that would make them candidates for becoming new varieties.

These four potato types were created as a result of the CIP’s breeding programme to encourage adaptation to conditions in subtropical lowlands, such as extreme temperatures, which are expected to be strongly affected by climate change.

papa-en-marte-4-bangladesh.jpg

Women harvest resistant potatoes in saline soils in Bangladesh. Credit: International Potato Center

Down to Earth

In addition to these four potato ‘finalists’, other clones and varieties have shown promising results when tested in severe environmental conditions. The findings offer researchers new clues about the genetic traits that can help tubers cope with severe weather scenarios on Earth.

papa-en-marte-5-walter amoros by zp.JPG

Walter Amorós, CIP’s potato breeder is one of the five researchers involved in the project. Credit: Zoraida Portillo

“It was a pleasant surprise to see that the potatoes that we have improved to tolerate adverse conditions were able to produce tubers on this soil [soil similar to that on Mars],” says Walter Amorós, CIP potato breeder and one of the five researchers involved in the project, who has studied potatoes for more than 30 years.

According to Alberto García, adviser to the UN Food and Agriculture Organization in Peru who is in charge of food security programmes, this experiment “serves to verify that potato, a produce of great nutritional value, is a crop extremely adaptable to the worst conditions”, something that is very relevant for current climate scenarios.

García stresses that global temperatures are now rising at a rate higher than expected, affecting not only potatoes but also other crops. Many now need to be cultivated at higher altitudes — which, he says, is not always a disadvantage and may even be beneficial for crops that were previously cultivated in valleys.

papa-en-marte-7-by ZP.jpg

Credit: Zoraida Portillo

“But it can also have negative consequences that we have to anticipate,” adds García. Therefore, he says this experiment can inspire others to think about future scenarios and look for other crops than can adapt to extreme conditions that will have an impact on agriculture.

Similar to Mars

The project began with a search for soils similar to that found on Mars. Julio Valdivia-Silva, a Peruvian researcher who worked at NASA’s Ames Research Center, eventually concluded that the soil samples collected in the Pampas de la Joya region of southern Peru were the most similar to Martian soil.

papa-en-marte-8-julio Valdivia.jpg

Julio Valdivia-Silva took soil samples at Pampa de La Joya, Peru. Credit: NASA/ International Potato Center

Arid, sterile and formed by volcanic rocks, these soil samples were extremely saline.

papa-en-marte-9-roca en la joya.jpg

Credit: Pampas de La Joya Official Site

 

Helped by engineers from the University of Engineering and Technology (UTEC) in Lima and based on designs by NASA’s Ames Research Center, the CIP built CubeSat — a miniature satellite that recreates, in a confined environment, a Martian-like atmosphere. This is where the potatoes were cultivated.

papa-en-marte-10-cubosat.jpg

The varieties were cultivated inside CubeSat, built by the CIP to recreate environmental conditions similar to those on Mars. Credit: International Potato Center / Mars Project

“If potatoes could tolerate the extreme conditions to which we exposed them in our CubeSat, they have a good opportunity to develop on Mars,” says Valdivia-Silva.

They then conducted several rounds of experiments to find out which varieties could better withstand the extreme conditions, and what minimum conditions each crop needed to survive.

papa-en-marte-11-Tierra-Marte-suelos.jpg

La Joya desert, Peru (left); Martian soil (right). Credits: Pampas de La Joya Official Site and NASA, respectively.

CubeSat, hermetically sealed, housed a container with La Joya soil, where each one of the tubers was cultivated. CubeSat itself supplied water and nutrients, controlled the temperature according to that expected at different times on Mars, and also regulated the planet’s pressure, oxygen and carbon dioxide levels.

papa-en-marte-12-compu-CIP.jpg

Connected to a computer, the CubeSat supplied water and nutrients, and imitated other environmental conditions that would be found on Mars. Credit: International Potato Center / Mars Project

 

Cameras were installed to record the process, broadcasting developments on the soil and making it possible to see the precise moment in which potatoes sprouted.

Based on the results, CIP scientists say that in order to grow potatoes on Mars, space missions will have to prepare the soil so it has a loose structure and contains nutrients that allow the tubers to obtain enough oxygen and water.

In a next phase of the project, the scientists hope to expose successful varieties to more extreme environmental conditions. This requires, among other things, developing a prototype satellite similar to CubeSat that can replicate more extreme conditions with greater precision, at a price tag of US$ 100,000.

This piece was produced by SciDev.Net’s Latin America and Caribbean desk.

This article was originally published on SciDev.Net. Read the original article.

Climate change to push Ethiopian coffee farming uphill

This article was republished from SciDev.Net.

By Baraka Rateng’

Relocating coffee areas, along with forestation and forest conservation, to higher altitudes to cope with climate change could increase Ethiopia‘s coffee farming area fourfold, a study predicts.

The study, published in Nature last month (19 June), suggests that moving Ethiopian coffee fields to higher ground because of climate change could increase resilience by substantially increasing the country’s suitable production area.

Justin Moat, spatial analyst at the UK’s Royal Botanic Gardens Kew, and lead author of the study, says that currently coffee farming is mainly confined to altitudes between 1200 and 2200 metres.

“A critical factor in the suitability of coffee farming is the interaction between rainfall and temperature.”

Justin Moat

“In general, coffee’s niche will move uphill to keep to optimal temperature,“ he tells SciDev.Net. “Much work would be needed to achieve this if planning starts now.”

According to Moat, up to 60 per cent of the country‘s current production area could become unsuitable before the end of the century.

Ethiopia, he says, is the world’s 5th largest coffee producer. The crop provides a quarter of export earnings, and approximately 15 million Ethiopians engage in coffee farming and production.

The study‘s results were based on computer modelling and simulations. “We determined coffee-preferred climate (niche) using a huge amount of data collected on the ground, including historic observations, overlaid on climate maps,” explains Moat.

They projected this niche into the future using climate models and scenarios, which revealed that all the models were in general agreement. They then combined this with satellite imagery to come up with the present-day forest coffee area, and the area projected in the future.

Higher altitudes are forecast to become more suitable for coffee while lower altitudes are projected to become less suitable, according to the study.

“A critical factor in the suitability of coffee farming is the interaction between rainfall and temperature; higher temperatures could be tolerated if there was an increase in rainfall,” Moat notes.

He adds that regardless of interventions, one of the country‘s best known coffee-growing regions — Harar, in eastern Ethiopia — is likely to disappear before the end of the century.

Shem Wandiga, a professor of chemistry at the University of Nairobi’s Institute for Climate Change Adaptation, Kenya, says that although the study cannot predict with full certainty, it holds important messages for policymakers.

“Start planning to expand coffee growing areas to higher elevation, he suggests. “The expansion should be coupled with forestation of the areas.“

Copyright: Panos

Researchers and policymakers should also map out the human, social and ecological conditions that may allow such expansion, according to Wandiga. Also, farmers should slowly substitute coffee with other plants that may bring income.

William Ndegwa, Kitui County director at the Kenya Meteorological Department, says the model used in the research is a powerful tool for linking climate variables with biological parameters.

“This is a very interesting [study] with deep insights into the characteristics of the impacts of climate change on crop production,” he notes.

This piece was produced by SciDev.Net’s Sub-Saharan Africa-English desk.

 

This article was originally published on SciDev.Net. Read the original article.

Brazil’s transgenic sugarcane stirs up controversy

By Luisa Massarani

This article was originally published on SciDev.Net. Read the original article.

[RIO DE JANEIRO] A genetically modified (GM) cane variety that can kill the sugarcane borer (Diatraea saccharalis) has been approved in Brazil,  to the delight of some scientists and the dismay of others, who say it may threaten Brazilian biodiversity.

Brazil is the second country, after Indonesia, to approve the commercial cultivation of GM sugarcane. The approval was announced by the Brazilian National Biosafety Technical Commission (CTNBio) on June 8.

Sugarcane borer is one of the main pests of the sugarcane fields of South-Central Brazil, causing losses of approximately US$1.5 billion per year.

“Breeding programmes could not produce plants resistant to this pest, and the existing chemical controls are both not effective and severely damaging to the environment,” says Adriana Hemerly, a professor at the Federal University of Rio de Janeiro, in an interview with SciDev.Net.

“Studies conducted outside Brazil prove that protein from genetically modified organisms harms non-target insects, soil fauna and microorganisms.”

Rogério Magalhães

“Therefore, the [GM variety] is a biotechnological tool that helps solve a problem that other technologies could not, and its commercial application will certainly have a positive impact on the productivity of sugarcane in the country.”

Jesus Aparecido Ferro, a member of CTNBio and professor at the Paulista Júlio de Mesquita Filho State University, believes the move followed a thorough debate that began in December 2015 — that was when the Canavieira Technology Center (Sugarcane Research Center) asked for approval to commercially cultivate the GM sugarcane variety.

“The data does not provide evidence that the cane variety has a potential to harm the environment or human or animal health,” Ferro told SciDev.Net.

To develop the variety, scientists inserted the gene for a toxin [Cry] from the bacterium Bacillus thuringiensis (Bt) into the sugarcane genome, so it could produce its own insecticide against some insects’ larvae.

This is a technology that “has been in use for 20 years and is very safe”, says Aníbal Eugênio Vercesi, another member of the CTNBio, and a professor at the State University of Campinas.

But Valério De Patta Pillar, also a member of the CTNBio and a professor at the Federal University of Rio Grande do Sul, points to deficiencies in environmental risk assessment studies for the GM variety — and the absence of assessments of how consuming it might affect humans and animals.

According to Pillar, there is a lack of data about the frequency with which it breeds with wild varieties. Data is also missing on issues such as the techniques used to create the GM variety and the effects of its widespread use.

Rogério Magalhães, an environmental analyst at Brazil’s Ministry of the Environment, also expressed concern about the approval of the commercial transgenic cane.

“I understand that studies related to the impacts that genetically modified sugarcane might have on Brazilian biodiversity were not done by the company that owns the technology,” said Magalhães in an interview with SciDev.Net. This is very important because Brazil’s climate, species, and soils differ from locations where studies might have taken place, he explained.

Among the risks that Magalhães identified is contamination of the GM variety’s wild relatives. “The wild relative, when contaminated with transgenic sugarcane, will have a competitive advantage over other uncontaminated individuals, as it will exhibit resistance to insect-plague that others will not have,” he explained.

Another risk that Magalhães warns about is damage to biodiversity. “Studies conducted outside Brazil prove that Cry protein from genetically modified organisms harms non-target insects, soil fauna and microorganisms.”

Magalhães added that some pests have already developed resistance to the Bt Cry protein, prompting farmers to apply agrochemicals that are harmful to the environment and human health.

This piece was originally published by SciDev.Net’s Latin America and Caribbean desk.

 

This article was originally published on SciDev.Net. Read the original article.

Genetics to boost sugarcane production

Scientists in Brazil are taking steps towards genetically modifying sugar cane so it produces more sucrose naturally, looking to eventually boost the productivity and economic benefits of the tropical grass.

A man stacks sugarcane at the Ver-o-Peso (Check the Weight) market in Belem.

Currently, it is common for producers to raise sucrose levels in sugar cane by applying artificial growth regulators or chemical ripeners. This inhibits flowering, which in turn prolongs harvest and milling periods.

One of these growth regulators, ethephon, is used to manage agricultural, horticultural and forestry crops around the world. It is widely used to manipulate and stimulate the maturation of sugarcane as it contains ethylene, which is released to the plant on spraying.

Ethylene, considered a ripening hormone in plants, contributes to increasing the storage of sucrose in sugar cane.

“Although we knew ethylene helps increase the amount of sugar in the cane, it was not clear how the synthesis and action of this hormone affected the maturation of the plant,” said Marcelo Menossi, professor at the University of Campinas (Unicamp) and coordinator of the project, which is supported by the Brazilian research foundation FAPESP.

To study how ethylene acts on sugarcane, the researchers sprayed ethephon and an ethylene inhibitor, aminoethoxyvinylglycine (AVG), on sugar cane before it began to mature.
sucrose accumulation.jpg

After spraying both compounds, they quantified sucrose levels in tissue samples from the leaves and stem of the cane. They did this five days after application and again 32 days later, on harvest.

Those plants treated with the ethephon ripener had 60 per cent more sucrose in the upper and middle internodes at the time of harvest, while the plants treated with the AVG inhibitor had a sucrose content that was lower by 42 per cent.

The researchers were then able to identify genes that respond to the action of ethylene during ripening of the sugar cane. They also successfully identified the genes involved in regulating sucrose metabolism, as well as how the hormone acts on sucrose accumulation sites in the plant.

Based on the findings, the team has proposed a molecular model of how ethylene interacts with other hormones.

“Knowing which genes or ripeners make it possible for the plant to increase the accumulation of sucrose will allow us to make genetic improvements in sugarcane and develop varieties that over-express these genes, without the need to apply ethylene, for example,” explained Menossi.

This research could also help with spotting the most productive sugar cane, as some varieties that do not respond well to hormones, he added. “It will be possible to identify those [varieties] that best express these genes and facilitate the ripening action.”

Taken from a newsletter by FAPESP, a SciDev.Net donor, edited by our Latin America and the Caribbean desk

 

This article was originally published on SciDev.Net. Read the original article.

« Older posts